Multi-D optimization problem

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 14

Multi-D optimization

Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x}) = 0$, $h(\vec{x}) \leq 0$

 \vec{x} design variables

 $E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains

Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow -E(\vec{x})$.

Solution with Matlab built in Multi-D minimization - fminsearch

```
[x, fval] = fminsearch(fun, x0)
```

fun hanldle to the multi-variable functionx0 initial 'guess' (vector)x optimum position vector

fval value of the function at the optimum

fminsearch - usage example

Example

```
function ret=fsample_sinc(v)
  x=v(1); y=v(2);
  r=sqrt(x^2+y^2);
  ret= -sin(r)/r;
end
```


It is easy to miss global minimum

Example

```
function ret=fsample_sinc(v)
  x=v(1); y=v(2);
  r=sqrt(x^2+y^2);
  ret= -sin(r)/r;
end
```


Example

Sample problem 1

Find the minimum of the function

$$F(x, y, z) = 2x^2 + 2y^2 + z^2 + 2xy + 1 - 2y + 2xz$$

Sample problem 1

Find the minimum of the function

$$F(x, y, z) = 2x^2 + 2y^2 + z^2 + 2xy + 1 - 2y + 2xz$$

$$F(x,y,z) = (x+y)^2 + (x+z)^2 + (z-1)^2$$

Minimum is [x, y, z] = [-1, 1, 1]

Sample problem 2: Potential well

Consider a 1D potential well with the following potential

$$U(x) = \begin{cases} \infty & : & x < 0 \\ 0 & : & x \le L \\ U_0 & : & x > L \end{cases}$$

Wave function for this problem

$$\Psi(x) = \begin{cases} 0 & : x < 0 \\ \sin(kx) & : x \le L \\ Be^{-\alpha x} & : x > L \end{cases}$$

Quantum Mechanics requires that $k = \frac{\sqrt{2m(E-U_o)}}{\hbar}$ and $\alpha = \frac{\sqrt{2m(U_o-E)}}{\hbar}$ We know that Ψ function must be continuous and differentiable

$$\Psi_{in}(L) = \Psi_{out}(L)$$

 $\Psi'_{in}(L) = \Psi'_{out}(L)$

Suppose that we somehow now k. What are the values for α and B?

Sample problem 2: Potential well (cont)

Instead of solving system of linear equations

$$\Psi_{in}(L) = \Psi_{out}(L)$$

 $\Psi'_{in}(L) = \Psi'_{out}(L)$

Let's construct merit function

$$M(\alpha, B) = (\Psi_{in}(L) - \Psi_{out}(L))^2 + (\Psi'_{in}(L) - \Psi'_{out}(L))^2$$

Sample problem 2: Potential well (cont)

Instead of solving system of linear equations

$$\Psi_{in}(L) = \Psi_{out}(L)$$

 $\Psi'_{in}(L) = \Psi'_{out}(L)$

Let's construct merit function

$$M(\alpha, B) = (\Psi_{in}(L) - \Psi_{out}(L))^2 + (\Psi'_{in}(L) - \Psi'_{out}(L))^2$$

Sample problem 3: hanging weights

Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 .

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions

```
m1=2; m2=2;
L1=3; L2=2; L3=3;
Ltot=4; Htot=0;
```


Sample problem 3: hanging weights

Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 .

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions

```
m1=2; m2=2;
L1=3; L2=2; L3=3;
Ltot=4; Htot=0;
```


The answer should be close to $\theta_1 = -1.231$; $\theta_2 = 0$; $\theta_3 = 1.231$;