Multi-D optimization problem

Eugeniy E. Mikhailov

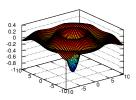
The College of William & Mary

Lecture 14

Eugeniy Mikhailov (W&M)

Notes

Multi-D optimization



Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x}) = 0, h(\vec{x}) \le 0$

 \vec{x} design variables

 $E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains

Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow -E(\vec{x})$.

Notes

Solution with Matlab built in Multi-D minimization fminsearch

[x, fval] = fminsearch(fun, x0)

fun hanldle to the multi-variable function

x0 initial 'guess' (vector)

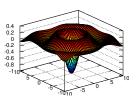
x optimum position vector

fval value of the function at the optimum

fminsearch - usage example

Example

function ret=fsample_sinc(v) x=v(1); y=v(2); $r=sqrt(x^2+y^2);$ ret = -sin(r)/r;end



x0vec=[0.5, 0.5]; [xResVec, zopt]=fminsearch(@fsample_sinc, x0vec) xResVec = [0.2852e-4,0.1043e-4] zopt = -1.0000

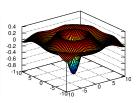
Notes

Notes

It is easy to miss global minimum

Example

```
function ret=fsample_sinc(v)
 x=v(1); y=v(2);
 r=sqrt(x^2+y^2);
 ret = -sin(r)/r;
end
```



Example

```
x0vec=[5, 5];
[xResVec,zopt]=fminsearch(@fsample_sinc, x0vec)
                      5.2621 ]
 xResVec = [ 5.6560]
 zopt = -0.1284
```

Eugeniy Mikhailov (W&M)

Practical Computing

Sample problem 1

Find the minimum of the function
$$F(x, y, z) = 2x^2 + 2y^2 + z^2 + 2xy + 1 - 2y + 2xz$$

Sample problem 1

Find the minimum of the function

$$F(x, y, z) = 2x^2 + 2y^2 + z^2 + 2xy + 1 - 2y + 2xz$$

$$F(x, y, z) = (x + y)^2 + (x + z)^2 + (z - 1)^2$$

Minimum is [x, y, z] = [-1, 1, 1]

Sample problem 2: Potential well

Consider a 1D potential well with the following potential

$$U(x) = \begin{cases} \infty : x < 0 \\ 0 : x \le L \\ U_0 : x > L \end{cases}$$

Wave function for this problem

$$\Psi(x) = \begin{cases} 0 & : \quad x < 0 \\ \sin(kx) & : \quad x \le L \\ Be^{-\alpha x} & : \quad x > L \end{cases}$$

Quantum Mechanics requires that $k=\frac{\sqrt{2m(E-U_o)}}{\hbar}$ and $\alpha=\frac{\sqrt{2m(U_o-E)}}{\hbar}$ We know that Ψ function must be continuous and differentiable

$$\Psi_{in}(L) = \Psi_{out}(L)$$

$$\Psi'_{i}(L) = \Psi'_{i}(L)$$

$$\Psi_{\textit{in}}'(L) \ = \ \Psi_{\textit{out}}'(L)$$

Suppose that we somehow now k. What are the values for α and B?

Notes

Notes

Notes

Notes

Sample problem 2: Potential well (cont)

Instead of solving system of linear equations

$$\Psi_{in}(L) = \Psi_{out}(L)$$

 $\Psi'_{in}(L) = \Psi'_{out}(L)$

Let's construct merit function

$$\textit{M}(\alpha,\textit{B}) = (\Psi_{\textit{in}}(\textit{L}) - \Psi_{\textit{out}}(\textit{L}))^2 + (\Psi_{\textit{in}}'(\textit{L}) - \Psi_{\textit{out}}'(\textit{L}))^2$$

Sample problem 2: Potential well (cont)

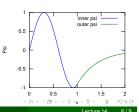
Instead of solving system of linear equations

$$\Psi_{in}(L) = \Psi_{out}(L)$$

 $\Psi'_{in}(L) = \Psi'_{out}(L)$

Let's construct merit function

$$M(\alpha, B) = (\Psi_{in}(L) - \Psi_{out}(L))^2 + (\Psi'_{in}(L) - \Psi'_{out}(L))^2$$

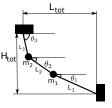


Sample problem 3: hanging weights

Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 .

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions



 $\mathbf{L}_{\underline{tot}}$

Sample problem 3: hanging weights

Consider masses m_1 and m_2 suspended by strings with length L_1 , L_2 , and L_3 . Find the angles θ_1 , θ_2 , and θ_3 .

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions

The answer should be close to $\theta_1 = -1.231$; $\theta_2 = 0$; $\theta_3 = 1.231$;

theta = fminsearch(@EconstrainedSuspendedWeights,
$$[-1,0,-1]$$
, optimset('TolX',1e-6))
theta = -1.2321 -0.0044 1.2311

Notes

Notes

Notes

Notes