Optimization problem

Eugeniy E. Mikhailov

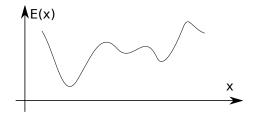
The College of William & Mary

Lecture 13

Eugeniy Mikhailov (W&M)

Practical Computing

Introduction to optimization



Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x}) = 0, h(\vec{x}) \le 0$

\vec{x} design variables

 $E(\vec{x})$ merit or objective or fitness or energy function

 $g(\vec{x})$ and $h(\vec{x})$ constrains

There is no guaranteed way (algorithm) which can find global minimum (optimal) point.

Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow -E(\vec{x})$.

Eugeniy Mikhailov (W&M)

If we have 1D case and E(x) has analytical derivative, optimization problem can be restated as

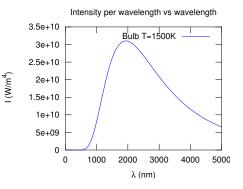
Find f(x) = 0where f(x) = dE/dx

since at maximum or minimum derivative must be zero. Since we already know how to find the solution of f(x) = 0 the rest is easy.

Example: max of black body radiation spectrum

According to Plank's law energy density per of black body radiation

$$I(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}$$



where

- *h* is Planck constant 6.626 × 10^{-34} J×s,
- c is speed of light 2.998 \times 10⁸ m/s,
- k is Boltzmann constant 1.380×10^{-23} J K⁻¹,
- T is body temperature,
- λ is wavelength

Eugeniy Mikhailov (W&M)

Solution with Matlab built in 1D minimization - fminbnd

```
function l_lambda=black_body_radiation(lambda,T)
% black body radiation spectrum
% lambda - wavelength of EM wave
% T - temperature of a black body
h=6.626e-34; % Plank constant
c=2.998e8; % speed of light
k=1.380e-23; % Boltzmann constant
l_lambda = 2*h*c^2 ./ (lambda.^5) ./ (exp(h*c./(lambda*k*T))-1);
end
```

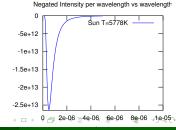
First we flip/negate function since our algorithm is suited for min search and set particular T

```
T=5778;
f = @(x) - black_body_radiation(x,T);
```

Next, we find optimal solution

```
fminbnd(f,1e-9,2e-6,optimset('TolX',1e-12))
ans = 5.0176e-07
% i.e. maximum radiation is at 502 nm
```

Then we plot it to find a bracket



(W/m⁴)

Golden section search algorithm

If you have an initial bracket for solution i.e. found a, b points such that there is a point x_p satisfying $a < x_p < b$ and $E(x_p) < min(E(a), E(b))$. Then h = (b - a)

• assign new probe points $x_1 = a + R * h$ and $x_2 = b - R * h$

2
$$E_1 = E(x_1), E_2 = E(x_2), E_a = E(a), E_b = E(b)$$

- If $h < \varepsilon_x$ then stop otherwise do steps below
- note that for small enough *h*: $E(x_1) < E(a)$ and $E(x_2) < E(b)$
- shrink/update the bracket

• if $E_1 < E_2$ then $b = x_2$, $E_b = E_2$ else $a = x_1$, $E_a = E_1$

- update h = (b a) and assign new probe points, with the proper *R* we can reuse one of the old points either x_1 , E_1 or x_2 , E_2
 - if $E_1 < E_2$

then
$$x_2 = x_1$$
, $E_2 = E_1$, $x_1 = a + R * h$, $E_1 = E(x_1)$
else $x_1 = x_2$, $E_1 = E_2$, $x_2 = b - R * h$, $E_2 = E(x_2)$

go to step 3

R given by the golden section $R = \frac{3-\sqrt{5}}{2} \approx 0.38197$

Derivation of the R value

at first step we have

$$\begin{array}{rcl} x_1 &=& a+R*h\\ x_2 &=& b-R*h \end{array}$$

Suppose that $E(x_1) < E(x_2)$ then a' = a and $b' = x_2$ then for the next bracket we evaluate x'_1 and x'_2

$$\begin{aligned} x_1' &= a' + R * h' = a' + R * (b' - a') \\ x_2' &= b' - R * h' = b' - R * (b' - a') \\ &= x_2 - R * (x_2 - a) = b - R * h - R * (b - R * h - a) \end{aligned}$$

we would like to reuse on of the previous evaluations of *E* so we require that $x_1 = x'_2$. This leads to equation

$$R^2 - 3R + 1 = 0$$
 with $R = \frac{3 \pm \sqrt{5}}{2}$

We need to choose minus sign since fraction $R \leq 1_{CO}$

Eugeniy Mikhailov (W&M)