Notes

Notes

Notes

If we have 1D case and E(x) has analytical derivative, optimization problem can be restated as

Find f(x) = 0where f(x) = dE/dx

since at maximum or minimum derivative must be zero. Since we already know how to find the solution of f(x) = 0 the rest is easy.

Notes

Solution with Matlab built in 1D minimization - fminbnd

function l_lambda=black_body_radiation(lambda,T) % black body radiation spectrum % lambda – wavelength of EM wave % T – temperature of a black body h=6.626e-34; % Plank constant c=2.93868; % speed of light k=1.380e-23; % Boltzmann constant Lambda = 2*h*c^2 ./ (lambda.^5) ./ (exp(h*c./(lambda*k*T))-1); First we flip/negate function since our Then we plot it to find a algorithm is suited for min search and set bracket particular T Sun T=5778K T=5778; -5e+12 f = @(x) - black_body_radiation(x,T); -1e+13 (W/m⁴) Next, we find optimal solution -1.5e+13 fminbnd (f,1e-9,2e-6,optimset ('TolX',1e-12)) -2e+13 ans = 5.0176e-07 % i.e. maximum radiation is at 502 nm -2.5e+13 6e-06 8e-06 .1e-05 Eugeniy Mikhailov (W&M) Practical Computin Lecture 13 Golden section search algorithm

If you have an initial bracket for solution i.e. found *a*, *b* points such that there is a point x_p satisfying $a < x_p < b$ and $E(x_p) < min(E(a), E(b))$. Then h = (b - a)

assign new probe points x₁ = a + R * h and x₂ = b - R * h
E₁ = E(x₁), E₂ = E(x₂), E_a = E(a), E_b = E(b)
if h < ε_x then stop otherwise do steps below
note that for small enough h: E(x₁) < E(a) and E(x₂) < E(b)
shrink/update the bracket

if E₁ < E₂ then b = x₂, E_b = E₂ else a = x₁, E_a = E₁

update h = (b - a) and assign new probe points, with the proper R we can reuse one of the old points either x₁, E₁ or x₂, E₂
if E₁ < E₂
then x₂ = x₁, E₂ = E₁, x₁ = a + R * h, E₁ = E(x₁) else x₁ = x₂, E₁ = E₂, x₂ = b - R * h, E₂ = E(x₂)

Practical Computing

R given by the golden section $R = \frac{3-\sqrt{5}}{2} \approx 0.38197$

Derivation of the R value

at first step we have

Eugeniy Mikhailov (W&M)

$$\begin{array}{rcl} x_1 &=& a+R*h\\ x_2 &=& b-R*h \end{array}$$

≜€(x)

Lecture 13

Suppose that $E(x_1) < E(x_2)$ then a' = a and $b' = x_2$ then for the next bracket we evaluate x'_1 and x'_2

$$\begin{aligned} x'_1 &= a' + R * h' = a' + R * (b' - a') \\ x'_2 &= b' - R * h' = b' - R * (b' - a') \\ &= x_2 - R * (x_2 - a) = b - R * h - R * (b - R * h - a) \end{aligned}$$

we would like to reuse on of the previous evaluations of *E* so we

require that $x_1 = x'_2$. This leads to equation

$$R^2 - 3R + 1 = 0$$
 with $R = \frac{3 \pm \sqrt{5}}{2}$

Notes

Notes

Notes

Notes