Practical example: diffraction

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 09

Eugeniy Mikhailov (W&M)

Practical Computing

< (P) > < (P) > (P

According to Huygens' principle, every point on the mask is a secondary source

$$E_t(\vec{r}) = \int \int_{mask} dx' dy' \frac{E(x', y')}{4\pi |\vec{r} - \vec{r}'|} e^{\vec{k}(\vec{r} - \vec{r}')}$$

Here

$$\vec{r} = x, y, z$$

 $\vec{r}' = x', y', z'$
 $\vec{k} = \frac{2\pi}{\lambda}$

イロト イロト イヨト イヨト

Diffraction approximation

$$E_t(\vec{r}) = \sum_i \sum_k \Delta x' \Delta y' \frac{E(x'_i, y'_k)}{4\pi |\vec{r} - \vec{r}'|} e^{\vec{k}(\vec{r} - \vec{r}')}$$

Here

$$\vec{r} = x, y, z$$

 $\vec{r}' = x'_i, y'_k, z'$
 $\vec{k} = \frac{2\pi}{\lambda}$

It is important that integrated function does not oscillate wildly from sample point to sample point. So we need $\Delta x'$ and $\Delta y' \ll \sqrt{L\lambda}$, where *L* is distance between mask and target.

Sample of diffraction

Let's consider a diffraction of light on a mask shown below.

- resolution
 1386 × 600 pixels
- physical size 2.8 × 1.2 cm
- distance to the target 1.1 m
- resolution 693×200 pixels,
- physical size
 3.0 × 1.4 cm
- wavelength $\lambda = 670 \text{ nm}$

Calculation time 6 and half hours at the 6 core AMD computer

Eugeniy Mikhailov (W&M)

Practical Computing