Numerical integration continued

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 08

Toy example - area of the pond

$$
\begin{aligned}
& A_{\text {pond }}=\frac{N_{\text {inside }}}{N_{\text {total }}} A_{\text {box }} \\
& \text { where }
\end{aligned}
$$

$$
A_{b o x}=\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)
$$

- Points must be uniformly and randomly distributed across the area.
- The smaller the enclosing box the better it is.

Naive Monte Carlo integration

- Points must be uniformly and randomly distributed across the area.
- The smaller the enclosing box the better it is. So $\max (f(x)) \rightarrow b_{y}$

Monte Carlo integration derived

Notice that if we choose a small stripe around the bin value x_{b}, then subset of points in that stripe gives an estimate for $f\left(x_{b}\right)$.
Thus why bother spreading points around area?

Let's chose a uniform random distribution of points x_{i} inside $\left[a_{x}, b_{x}\right]$

$$
\int_{a_{x}}^{b_{x}} f(x) d x \approx \frac{b_{x}-a_{x}}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Error estimate for Monte-Carlo method

It can be shown that error of the numerical integration (E) is given by the following expressions

Monte Carlo method

$$
E=\mathcal{O}\left(\left(b_{x}-a_{x}\right) \sqrt{\frac{\left\langle f^{2}\right\rangle-\langle f\rangle^{2}}{N}}\right)
$$

where

$$
\begin{aligned}
<f> & =\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \\
<f^{2}> & =\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(x_{i}\right)
\end{aligned}
$$

Error estimate for other methods

Rectangle method

$$
E=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right) h}{2} f^{\prime}\right)=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right)^{2}}{2 N} f^{\prime}\right)
$$

Trapezoidal method

$$
E=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right) h^{2}}{12} f^{\prime \prime}\right)=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right)^{3}}{12 N^{2}} f^{\prime \prime}\right)
$$

Simpson method

$$
E=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right) h^{4}}{180} f^{(4)}\right)=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right)^{5}}{180 N^{4}} f^{(4)}\right)
$$

Multidimensional integration with interval splitting

$$
\int_{a_{x}}^{b_{x}} \int_{a_{y}}^{b_{y}} f(x, y) d x d y=\int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} d y f(x, y)
$$

Note that last integral is the function of only x

$$
\begin{array}{r}
\int_{a_{y}}^{b_{y}} d y f(x, y)=F(x) \\
\int_{a_{x}}^{b_{x}} \int_{a_{y}}^{b_{y}} f(x, y) d x d y=\int_{a_{x}}^{b_{x}} d x F(x)
\end{array}
$$

Thus we replaced multidimensional integral as consequent series of single dimension integrals, which we already know how to do.
3D case would look like this
$\int_{a_{x}}^{b_{x}} \int_{a_{y}}^{b_{y}} \int_{a_{z}}^{b_{z}} f(x, y, z) d x d y d z=\int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} d y \int_{a_{z}}^{b_{z}} d z f(x, y, z)$

Multidimensional integration with Monte Carlo

Note that if we would like to split integration region by N points in every of D dimensions, then evaluation time grows $\sim N^{D}$, which renders Rectangle, Trapezoidal, Simpson, and alike method useless.
Monte Carlo method is a notable exception, it looks very simple even for multidimensional case and maintains the same $\sim N$ evaluation time.
3D case would look like this
$\int_{a_{x}}^{b_{x}} d x \int_{a_{y}}^{b_{y}} d y \int_{a_{z}}^{b_{z}} d z f(x, y, z) \approx \frac{\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\left(b_{y}-a_{z}\right)}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}, z_{i}\right)$

A general case

$$
\int_{V} d \vec{x} f(\vec{x}) \approx \frac{V}{N} \sum_{i=1}^{N} f\left(\vec{x}_{i}\right)
$$

where V is multidimensional point, \vec{x}_{i} randomly and uniformly distributed points in the volume V

Matlab functions for integration

1D integration

- integral
- trapz
- quad

2D and 3D

- integral2
- integral3

There are many others as well. See Numerical Integration help section.
Matlab's implementations are more powerful than those which we discussed but deep inside they use similar methods.

