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Secant method

A fX)

Xiy2 = Xip1 — F(Xiy1) A

Xit1 — Xi
Xi+1) — f(xi)

Need to provide two starting points x; and xo.
Secant method converges with m = (1 +1/5)/2 ~ 1.618
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Newton-Raphson method

]

_ f(xi) }

Need to provide a starting points x; and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).
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Numerical derivative of a function

Mathematical definition

f(x + h) — f(x)
h

The initial intent is to calculate it at very small h.

f'(x)=1li
(x) A0
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Numerical derivative of a function

Mathematical definition
f(x + h) — f(x)
h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HWO01).

f'(x)=1li
(x) A0
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Numerical derivative of a function

Mathematical definition

f(x + h) — f(x)
h
The initial intent is to calculate it at very small h.

Remember about roundoff errors (HWO01).
For computers with h small enough f(x + h) — f(x) = 0.

f'(x)=1li
(x) A0
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Numerical derivative of a function

Mathematical definition

f(x + h) — f(x)
h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HWO01).

For computers with h small enough f(x + h) — f(x) = 0.
Let’s be smarter. Recall Taylor series expansion

f'(x) f(x)

2
TR I

f'(x)=1li
(x) A0

f(x + h) = f(x) +
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Numerical derivative of a function

Mathematical definition

F(x) = ,L@O f(x + hzl — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HWO01).

For computers with h small enough f(x + h) — f(x) = 0.
Let’s be smarter. Recall Taylor series expansion

f(x + h) = f(x) + ’”1()!()h + f”2(| )h2

So we can see

£00 f(x+hf)7 1) _ - f”éx)h o

Here computed approximation and algorithm error
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Numerical derivative of a function

Mathematical definition

F(x) = ,L@O f(x + h/)7 — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HWO01).

For computers with h small enough f(x + h) — f(x) = 0.
Let’s be smarter. Recall Taylor series expansion

f(x + h) = f(x) + '”1()!()h+ f”2(| )h2
So we can see
f/( ) f(X+h27 f( ) — f/(X)_ f//éx)h L.

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.
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Derivative via Forward difference

, f(x + h) — f(x
i = (M =100
Algorithm error
f(x
Efd ~ é )h
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Derivative via Forward difference

, f(x + h) — f(x
fi0 = =1
Algorithm error
f(x
Efd ~ é )h

This is quite bad since error is proportional to A.
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Derivative via Forward difference

, f(x + h) — f(x)
fy(x) = ———
Algorithm error
f/l
Efg ~ 2 h

This is quite bad since error is proportional to A.

f(x) = a+ bx?

v
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Derivative via Forward difference

, f(x + h) — f(x)
fy(x) = ———
Algorithm error
f/l
Efg ~ 2 h

This is quite bad since error is proportional to A.

f(x) = a+ bx?

fr(x) = bxh

v
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Derivative via Forward difference

, f(x + h) — f(x)
fox) = =——
Algorithm error
f/l
Efg ~ 2 h

This is quite bad since error is proportional to A.

f(x) = a+ bx?
fr(x) = bxh
So for small x, the algorithm error dominate our approximation!

v
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Derivative via Central difference

£(x) = f(x + h)z—hf(x — h) J
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Derivative via Central difference

£(x) = f(x + h)z—hf(x — h) J

Algorithm error

fl/l(x) h2

€cd ~
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Ridders method - variation of false position

Solve f(x) = 0 with the following approximation of the function
f(x) = g(x) exp(—Cx), where g(x) = a+ bx i.e. linear.
We can also say that g(x) = f(x) exp(Cx).

When x3 — x; = xo — x3 = h it is convenient to use the following
equivalent notation

g(x) = f(x)exp(C(x — X3)) = a+ bx ]
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Ridders method implementation

@ bracket the root between x; and x»
@ evaluate function in the mid point x3 = (X1 + X2)/2
© find new approximation for the root

f3

—r —h (X3 — x1) J

where f1 = f(X1), f2 = f(Xg), f3 = f(X3)
© check if x4 satisfies convergence condition and we should stop
© rebracket the root using
@ X4 and f4 = f(X4)
e whichever of (xy, X2, X3) is closer to x4, and provides proper bracket.

© proceed to step 1

X4 = X3 + sign(fy — f)

Nice parts: x4 is guaranteed to be inside the bracket, convergence of
the algorithm is quadratic m = 2. But it requires evaluation of the f(x)
twice for f; and £, thus actually m = /2.
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Root finding algorithm gotchas
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Root finding algorithm gotchas

Bracketing algorithm are bullet
proof and will always converge,
however false position
algorithm could be slow.

A fx)

<y
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Root finding algorithm gotchas

Bracketing algorithm are bullet Newton-Raphson and secant
proof and will always converge, algorithm are usually fast but
however false position starting points need to be close
algorithm could be slow. enough to the root.

A fx) A fx)

Xy
<y

Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 9/10



Root finding algorithms summary

Root bracketing algorithms Non bracketing algorithms
@ bisection @ Newton-Raphson
o false position @ secant
@ Ridders Pro
Pro @ faster
@ robust i.e. always @ no need to bracket (just
converge. give a reasonable starting
Contra point)
@ usually slower Contra
convergence @ may not converge

@ require initial bracketing

See Matlab built in function £zero for equivalent tasks.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 10/10



	Secant method
	Newton-Raphson method
	Numerical derivative of a function
	Ridders method
	Root finding algorithms gotchas
	Root finding algorithms summary

