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Secant method

Notes
A f(x)
>
X
Xiy1 — X;
Xipo = Xip1 — F(Xipt) om0
iv2 = Xip1 — f( ’+1)f(Xi+1) — )
Need to provide two starting points x; and xo.
Secant method converges with m = (1 ++/5)/2 ~ 1,618
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Newton-Raphson method
Notes
f(x;)
Need to provide a starting points x; and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).
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Numerical derivative of a function
Notes

Mathematical definition

/00 = im F(x + hf), — f(x)

The initial intent is to calculate it at very small h.
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Numerical derivative of a function

Mathematical definition Notes
. f(x+ h)—f(x)
4 p—
10 = fm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
100 = Jm ==
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
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Numerical derivative of a function
Mathematical definition Notes
. f(x+ h)—f(x)
1(x) —
70 = Jm =
The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.
Let's be smarter. Recall Taylor series expansion
f/ f//
f(x+h) = f(x)+%h+ 2(|X)h2+---
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Numerical derivative of a function
Notes

Mathematical definition

/00 = im Fx + hf), — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

f(x+h) = f(x)+@h+ %hﬂ

So we can see

f(x + h) — f(x) £(x)
2

fi(x) = —p = f'(x) h

Here computed approximation and algorithm error
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Numerical derivative of a function

Mathematical definition Notes

/00 = im F(x + h/)1 — f(x)

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f(x + h) — f(x) = 0.

Let’s be smarter. Recall Taylor series expansion

.

f(x + h) = £(x) + @h + fﬂé!x)

So we can see
f(x + h) — f(x) i

00 = (CHEDZT0) g T,

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.
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Derivative via Forward difference

£(x) = f(x + h,)7 — f(x) J

Notes

Algorithm error

(x)

Efd A h

Eugeniy Mikhailov (W&M) Practical Computing Lecture 06 5/10

Derivative via Forward difference

Notes
£(x) = f(x + h,)7 — f(x) J

Algorithm error

(x)
> h

Efd ~

This is quite bad since error is proportional to h.
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Derivative via Forward difference

Notes
£(x) = f(x + h,)7 — f(x)

A —

Algorithm error

f”(X)
> h

Efd ~

This is quite bad since error is proportional to h.

Example

f(x) = a+ bx?
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Derivative via Forward difference

Notes
£(x) = f(x + h,), — f(x)

A —

Algorithm error

fII(X)
5 h

Efg =

This is quite bad since error is proportional to h.

Example

f(x) = a+ bx?

f(x) = bxh+ bh
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Derivative via Forward difference

Notes
£(x) = fx + h,)7 — f(x)

A —

Algorithm error

This is quite bad since error is proportional to h.

f(x) = a+ bx?

f(x) = bxh+bh

So for small x, the algorithm error dominate our approximation!
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Derivative via Central difference

Notes

f(x + h) — f(x — h)

() = o

N—
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Derivative via Central difference
Notes

f(x) = f(x +h) —f(x — h) J

2h

Algorithm error

f/l/(X) 2
6 h

Eed
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Ridders method - variation of false position

Solve f(x) = 0 with the following approximation of the function Notes
f(x) = g(x) exp(—Cx), where g(x) = a+ bx i.e. linear.
We can also say that g(x) = f(x) exp(Cx).
A
When x3 — xy = X2 — x3 = hit is convenient to use the following
equivalent notation
g(x) = f(x) exp(C(x — X3)) = a+ bx ]
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Ridders method implementation
Notes
@ bracket the root between x; and x,
@ evaluate function in the mid point x3 = (X + Xx2)/2
@ find new approximation for the root
. f:
X4 = X3 + Sign(fy — fp)————=(x3 — X1)
& —fify
where fy = f(x1), & = f(x2), 3 = f(X3)
Q@ check if x4 satisfies convergence condition and we should stop
@ rebracket the root using
e x4 and fy = f(Xq)
e whichever of (x1, X2, X3) is closer to x4 and provides proper bracket.
@ proceed to step 1
Nice parts: x4 is guaranteed to be inside the bracket, convergence of
the algorithm is quadratic m = 2. But it requires evaluation of the f(x)
twice for f; and f; thus actually m = /2.
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Root finding algorithm gotchas
Notes
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Root finding algorithm gotchas
Notes

Bracketing algorithm are bullet
proof and will always converge,

however false position
algorithm could be slow.
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Root finding algorithm gotchas

Notes
Bracketing algorithm are bullet Newton-Raphson and secant
proof and will always converge, algorithm are usually fast but
however false position starting points need to be close
algorithm could be slow. enough to the root.
f(x) f(x)
X X3 Xy
2 N T T S s 3
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Root finding algorithms summary
Notes
Root bracketing algorithms Non bracketing algorithms
@ bisection @ Newton-Raphson
o false position @ secant
@ Ridders Pro
Pro o faster
@ robust i.e. always @ no need to bracket (just
converge. give a reasonable starting
Contra point)
o usually slower Contra
convergence @ may not converge
@ require initial bracketing
See Matlab built in function £zero for equivalent tasks.
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Notes

Notes
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