
Root finding

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 05

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 1 / 10

Root finding problem

Generally we want to solve the following canonical problem

f (x) = 0

Example

2 sin(x)− 1 = 0

Often we have a problem which looks slightly different

h(x) = g(x)

But it is easy to transform to canonical form with

f (x) = h(x)− g(x) = 0
Example

3x3 + 2 = sin x → 3x3 + 2− sin x = 0

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 2 / 10

Root finding problem

Generally we want to solve the following canonical problem

f (x) = 0

Example

2 sin(x)− 1 = 0

Often we have a problem which looks slightly different

h(x) = g(x)

But it is easy to transform to canonical form with

f (x) = h(x)− g(x) = 0
Example

3x3 + 2 = sin x → 3x3 + 2− sin x = 0

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 2 / 10

Root finding problem

Generally we want to solve the following canonical problem

f (x) = 0

Example

2 sin(x)− 1 = 0

Often we have a problem which looks slightly different

h(x) = g(x)

But it is easy to transform to canonical form with

f (x) = h(x)− g(x) = 0
Example

3x3 + 2 = sin x → 3x3 + 2− sin x = 0

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 2 / 10

Root finding problem

Generally we want to solve the following canonical problem

f (x) = 0

Example

2 sin(x)− 1 = 0

Often we have a problem which looks slightly different

h(x) = g(x)

But it is easy to transform to canonical form with

f (x) = h(x)− g(x) = 0

Example

3x3 + 2 = sin x → 3x3 + 2− sin x = 0

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 2 / 10

Root finding problem

Generally we want to solve the following canonical problem

f (x) = 0

Example

2 sin(x)− 1 = 0

Often we have a problem which looks slightly different

h(x) = g(x)

But it is easy to transform to canonical form with

f (x) = h(x)− g(x) = 0
Example

3x3 + 2 = sin x → 3x3 + 2− sin x = 0

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 2 / 10

Trial and error method

One can try to get the solution by just guessing with a hope to hit the
solution. This is not highly scientific.

However each guess can provide some clues.
A general search algorithm is the following

make a guess i.e. trial
make intelligent new guess (xi+1) judging from this trial (xi)
continue as long as |f (xi+1)| > εf and |xi+1 − xi | > εx

Example
Let’s play a simple game:

some one think of any number between 1 and 100
I will make a guess
you provide me with either “less” or “more” depending where is my
guess with respect to your number

How many guesses do I need? At most 7

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 3 / 10

Trial and error method

One can try to get the solution by just guessing with a hope to hit the
solution. This is not highly scientific.
However each guess can provide some clues.

A general search algorithm is the following
make a guess i.e. trial
make intelligent new guess (xi+1) judging from this trial (xi)
continue as long as |f (xi+1)| > εf and |xi+1 − xi | > εx

Example
Let’s play a simple game:

some one think of any number between 1 and 100
I will make a guess
you provide me with either “less” or “more” depending where is my
guess with respect to your number

How many guesses do I need? At most 7

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 3 / 10

Trial and error method

One can try to get the solution by just guessing with a hope to hit the
solution. This is not highly scientific.
However each guess can provide some clues.
A general search algorithm is the following

make a guess i.e. trial
make intelligent new guess (xi+1) judging from this trial (xi)
continue as long as |f (xi+1)| > εf and |xi+1 − xi | > εx

Example
Let’s play a simple game:

some one think of any number between 1 and 100
I will make a guess
you provide me with either “less” or “more” depending where is my
guess with respect to your number

How many guesses do I need? At most 7

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 3 / 10

Trial and error method

One can try to get the solution by just guessing with a hope to hit the
solution. This is not highly scientific.
However each guess can provide some clues.
A general search algorithm is the following

make a guess i.e. trial
make intelligent new guess (xi+1) judging from this trial (xi)
continue as long as |f (xi+1)| > εf and |xi+1 − xi | > εx

Example
Let’s play a simple game:

some one think of any number between 1 and 100
I will make a guess
you provide me with either “less” or “more” depending where is my
guess with respect to your number

How many guesses do I need?

At most 7

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 3 / 10

Trial and error method

One can try to get the solution by just guessing with a hope to hit the
solution. This is not highly scientific.
However each guess can provide some clues.
A general search algorithm is the following

make a guess i.e. trial
make intelligent new guess (xi+1) judging from this trial (xi)
continue as long as |f (xi+1)| > εf and |xi+1 − xi | > εx

Example
Let’s play a simple game:

some one think of any number between 1 and 100
I will make a guess
you provide me with either “less” or “more” depending where is my
guess with respect to your number

How many guesses do I need? At most 7

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 3 / 10

Bisection method pseudo code

Works for any continuous function in vicinity of function root
make initial bracket for search x+ and x− such that

f (x+) > 0
f (x−) < 0

loop begins
make new guess value xg = (x+ + x−)/2
if |f (xg)| ≤ εf or |x+ − xg | ≤ εx
stop we found the solution with desired approximation
otherwise if f (xg) > 0 then x+ = xg else x− = xg
continue the loop

X+1

X-1

X+2

X-2

X -3X -4

X+3

f(x)

x

X+4

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 4 / 10

Bisection - simplified matlab implementation
function x_sol=bisection(f, xn, xp, eps_f, eps_x)
% solving f(x)=0 with bisection method

xg=(xp+xn)/2; % initial guess
fg=f(xg); % initial function evaluation

while ((abs(fg) > eps_f) & (abs(xg-xp)>eps_x))
if (fg>0)
xp=xg;

else
xn=xg;

end
xg=(xp+xn)/2; % update guess
fg=f(xg); % update function evaluation

end
x_sol=xg; % solution is ready

end
Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 5 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

function ret=function_to_solve(x)
ret=(x-10)*(x-20)*(x+3);

end

pay attention to the function handle
operator @

eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...

@function_to_solve,...
-4.1, 2, ...
eps_f, eps_x)

x0 = -3.0000

always cross check results

>> function_to_solve(x0)
ans = 3.0631e-07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 6 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.
People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.
So what should we check for sure

1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.

People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.
So what should we check for sure

1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.
People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.
So what should we check for sure

1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.
People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.
So what should we check for sure

1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.
People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.

So what should we check for sure
1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.
People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”
Muphry’s Law

Never expect that user will put valid inputs.
So what should we check for sure

1 f (xn) < 0
2 f (xp) > 0

It would be handy to return secondary outputs
with the value of function at the found solution point
the number of iterations (good for performance tests)

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 7 / 10

False position (regula falsi) method

In this method we naively approximate our function as a line.

X+1

X-1

X+2

X-2

X -3

X -4

X+4

f(x)

x
X+3

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 8 / 10

False position method - pseudo code

make initial bracket for search x+ and x− such that
f (x+) > 0
f (x−) < 0

loop begins
draw a chord between points (x−, f (x−)) and (x+, f (x+))
make new guess value at the point of the chord intersection with
the ’x’ axis

xg =
x−f (x+)− x+f (x−)

f (x+)− f (x−)

if |f (xg)| ≤ εf or |x+ − xg | ≤ εx
stop we found the solution with desired approximation
otherwise if f (xg) > 0 then x+ = xg else x− = xg

continue the loop

Note: it looks like bisection except the way of updating xg

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 9 / 10

Solution convergence

We say that algorithm has defined convergence if it is possible to
express

lim
k→∞

(xk+1 − x0) = c(xk − x0)
m

Where x0 is true root of the equation, c is some constant, and m is the
order of convergence.

The best algorithm have quadratic convergence i.e. m = 2

the bisection algorithm has linear rate of convergence (m = 1) and
c = 1/2
it is generally impossible to define convergence order for the false
position method

Generally the speed of the algorithm is related to its convergence
order. How ever other factors may affect the speed.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 10 / 10

Solution convergence

We say that algorithm has defined convergence if it is possible to
express

lim
k→∞

(xk+1 − x0) = c(xk − x0)
m

Where x0 is true root of the equation, c is some constant, and m is the
order of convergence.
The best algorithm have quadratic convergence i.e. m = 2

the bisection algorithm has linear rate of convergence (m = 1) and
c = 1/2
it is generally impossible to define convergence order for the false
position method

Generally the speed of the algorithm is related to its convergence
order. How ever other factors may affect the speed.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 10 / 10

Solution convergence

We say that algorithm has defined convergence if it is possible to
express

lim
k→∞

(xk+1 − x0) = c(xk − x0)
m

Where x0 is true root of the equation, c is some constant, and m is the
order of convergence.
The best algorithm have quadratic convergence i.e. m = 2

the bisection algorithm has linear rate of convergence (m = 1) and
c = 1/2
it is generally impossible to define convergence order for the false
position method

Generally the speed of the algorithm is related to its convergence
order. How ever other factors may affect the speed.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 10 / 10

Solution convergence

We say that algorithm has defined convergence if it is possible to
express

lim
k→∞

(xk+1 − x0) = c(xk − x0)
m

Where x0 is true root of the equation, c is some constant, and m is the
order of convergence.
The best algorithm have quadratic convergence i.e. m = 2

the bisection algorithm has linear rate of convergence (m = 1) and
c = 1/2
it is generally impossible to define convergence order for the false
position method

Generally the speed of the algorithm is related to its convergence
order. How ever other factors may affect the speed.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 05 10 / 10

	Root finding problem
	Bisection method
	False position method
	Solution convergence

