Notes

Functions and scripts

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 04

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 1/13

Notes
Script is the sequence of the Matlab expressions written in the file.

N=1:N_max;

M=0x (N) ;
for i=N

M(i)=(1l+x/1)"1i;
end

plot (N,M,"~");
xlabel (N, number of payments per year’);

ylabel ('Money grows’);
title ('Money grows vs number of payments per year’);

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 2/13

Scripts

Notes
Script is the sequence of the Matlab expressions written in the file.

N=1:N_max;

M=0+ (N) ;
for i=N

M(i)=(l+x/1)"i;
end

plot (N, M, -");
xlabel (N, number of payments per year’);

ylabel ('Money grows’);
title ('Money grows vs number of payments per year’);

Let’s save it to the file
money_grows. m

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 2/13

Scripts

Notes
Script is the sequence of the Matlab expressions written in the file.

N=1:N_max;

M=0x (N) ;
for i=N

M(i)=(1l+x/1)"i;
end

plot (N,M,"-");
xlabel (N, number of payments per year’);

ylabel ('Money grows’);
title(’Money grows vs number of payments per year’);

Let’s save it to the file
money_grows. m

Now we can assign any N_max
and x, then execute the script

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 2/13

Scripts
T)) .) Notes
Script is the sequence of the Matlab expressions written in the file.
N=1:N_max;
M=0+ (N) ;
for i=N
M(i)=(1+x/1)"1i;
end
plot (N,M,"~");
xlabel (N, number of payments per year’);
ylabel ('Money grows’);
title (’Money grows vs number of payments per year’);
Let’s save it to the file P> BLmEE=Ap 55058
money_grows.m >> money_grows;
Now we can assign any N_max >~ M
and x, then execute the script &
1.50 1.56 1.58 1.60
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 2/13
Scripts variable space
. . ' . . Notes
Unlike functions scripts modify Workspace variables
N=1:N_max;
M=0* (N) ;
for i=N
M(i)=(1+x/1)"i;
end
plot(N,M,"-");
xlabel (N, number of payments per year’);
ylabel (' Money grows');
title(’Money grows vs number of payments per year’);
>> M=123; x=.5;
>> N_Max=2; money_grows;
>> M
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 3/13
Scripts variable space
) . ' . . Notes
Unlike functions scripts modify Workspace variables
N=1:N_max;
M=0x (N) ;
for i=N
M(i)=(1l+x/1)"i;
end
plot (N,M,"-");
xlabel (N, number of payments per year’);
ylabel (' Money grows’);
title ("Money grows vs number of payments per year’);
>> M=123; x=.5; Think about script as it is a
>> N_Max=2; money_grows; keyboard macro. Calling script
>> M is equivalent to typing the
M = scripts statements from the
1.5000 1.5625 keyboard.
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 3/13
Matlab functions
Notes

Used for separation of a meaningful chunk of code
function [outl, out2, ..., outN] = func_name (argt, arg2, ..., argN)

% optional but strongly recommended function description
set of expressions of the function body

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 4/13

Matlab functions

Used for separation of a meaningful chunk of code Notes

function [outl, out2, ..., outN] = func_name (argt, arg2, ..., argN)

% optional but strongly recommended function description
set of expressions of the function body
end

function h=hypotenuse (cathetusl, cathetus2)

% Calculates hypotenuse of a right angle triangle.
% Inputs are the length of the catheti:
% cathetusl and cathetus2

h=sqgrt (cathetusl”2+cathetus2"2);
end

Function must be saved into separate name with filename matching

function name and extension m. In our case it is hypotenuse.m

Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 1

Matlab functions

a
IS
@

Used for separation of a meaningful chunk of code Notes

function [outl, out2, ..., outN] = func_name (argt, arg2, ..., argN)

% optional but strongly recommended function description
set of expressions of the function body
end

function h=hypotenuse (cathetusl, cathetus2)

% Calculates hypotenuse of a right angle triangle.
% Inputs are the length of the catheti:
% cathetusl and cathetus2

h=sqgrt (cathetusl”2+cathetus2"2);

end

Function must be saved into separate name with filename matching

function name and extension m. In our case it is hypotenuse.m

>> c=hypotenuse (3, 4)

c =
5

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 4/13

Function self documentation

Notes

function h=hypotenuse (cathetusl, cathetus2)
Calculates hypotenuse of a right angle triangle.

Inputs are the length of the catheti:
cathetusl and cathetus2
h=sqgrt (cathetusl”2+cathetus272);

o0 o° oP

end

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 5/13

Function self documentation
Notes

function h=hypotenuse (cathetusl, cathetus2)
Calculates hypotenuse of a right angle triangle.
Inputs are the length of the catheti:

o0 o° oP

cathetusl and cathetus2
h=sqgrt (cathetusl”2+cathetus272);

end

>> help hypotenuse

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 5/13

Function self documentation

Notes
function h=hypotenuse (cathetusl, cathetus2)
% Calculates hypotenuse of a right angle triangle.
% Inputs are the length of the catheti:
% cathetusl and cathetus2
h=sqgrt (cathetusl”2+cathetus272);
end
>> help hypotenuse
Calculates hypotenuse of a right angle triangle.
Inputs are the length of the catheti:
cathetusl and cathetus2
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 5/13
Function with multiple output
Notes
function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector
pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;
end
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 6/13
Function with multiple output
Notes
function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector
pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;
end
>> v=[1,2,-2,3,-5]
v =
1 2 =2 3 =5
>> [p,n]=pos_neg_sum (V)
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 6/13
Function with multiple output
Notes

function [pos,neg]=pos_neg_sum(x)
calculates sum of positive and negative elements

o
S
o
S

of the input vector
pos=sum (x (x>0)) ;

neg=sum (x (x<0)) ;
end

>> v=[1,2,-2,3,-5]

v =

1 2 -2 3 =5

>> [p,n]=pos_neg_sum (V)

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 6/13

Function with multiple output

Notes
function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector
pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;
end
>> v=[1,2,-2,3,-5]
v =
1 2 =2 3 =5
5> (9, s, nee. G () Ifyoga;kfoﬂg35|tmeeMrn
the first in the list value i.e. pos
p =
6 >> y=pos_neg_sum(v)
n =
=7
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 6/13
Function with multiple output
Notes
function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector
pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;
end
>> v=[1,2,-2,3,-5]
v =
1 2 =2 3 =5
5> (9, 1l —Ees. e, G () Ifyogagkfoﬂg35|tmeeMrn
the first in the list value i.e. pos
p =
6 >> y=pos_neg_sum(v)
n =
-7 Yy
6
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 6/13
Local space of variables in functions
Notes
function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector
pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;
end
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 7/13
Local space of variables in functions
Notes

function [pos,neg]=pos_neg_sum(x)
% calculates sum of positive and negative elements
% of the input vector

pos=sum (x (x>0)) ;
neg=sum (x (x<0)) ;

end

>> pos=23;
>> x=[1,-1,-11;

>> v=[1,2,-2,3,-5];

[p,n]=pos_neg_sum (v)

Eugeniy Mikhailov (W&M) Practical Computing

Lecture 04

Local space of variables in functions

function [pos,neg]=pos_neg_sum(x)

calculates sum of positive and negative elements
of the input vector

pos=sum (x (x>0)) ;

neg=sum (x (x<0)) ;

end

o o

>> pos=23;
>> x=[1,-1,-11;
>> v=[1,2,-2,3,-51;

[p,n]=pos_neg_sum (v)

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 7/13

Local space of variables in functions

function [pos,neg]=pos_neg_sum(x)

calculates sum of positive and negative elements
of the input vector

pos=sum (x (x>0)) ;

neg=sum (x (x<0)) ;

end

o
S
o
S

>> pos=23;
>> x=[1,-1,-11;
>> v=[1,2,-2,3,-5];

[p,n]=pos_neg_sum (v)

p = >> pos
6 pos =
n = 23
=7
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 7/13

Local space of variables in functions

function [pos,neg]=pos_neg_sum(x)

calculates sum of positive and negative elements
of the input vector

pos=sum (x (x>0)) ;

neg=sum (x (x<0)) ;

end

o
S
o
S

>> pos=23;
>> x=[1,-1,-11;
>> v=[1,2,-2,3,-5];

[p,n]=pos_neg_sum (v)

p = >> pos >> x
6 pos = X =

n = 23 1-1-1
=7
Eugeniy Mikhailov (W&M) Practical Computing

Lecture 04 7/13

Recursion: function calls itself

Canonical example: factorial

N=Nx(N-1)x(N-2)---3x2x1

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 8/13

Notes

Notes

Notes

Notes

Recursion: function calls itself

Notes

Canonical example: factorial

NI=Nx(N-1)x (N-2)---83x2x1

We can rewrite it as

Nl =N x (N-1)!
Notice that 0! = 1

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 8/13

Recursion for factorial

Notes
function f=myfactorial (N)

Calculates factorial of the input. N!=Nx(N-1)!

o
c
o
S

Input must be an integer larger or equal to zero.

if (N < 0) % ALWAYS sanitize the input !!!
error ('wrong input, input must be >= 07);

end
if (N ~= floor(N))
error (' input is not an integer number’);

end

oe

Once input is good we can calculate the factorial
if (N==0)
f=1; return; % return stops the evaluation

end
f=Nxmyfactorial (N-1);

end
Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 9/13
Saving your results
Notes

Let’s say you have calculated some intermediate results and want to
save them.

Eugeniy Mikhailov (W&M) Practical Computing

Saving your results

) ’ N
Let’s say you have calculated some intermediate results and want to otes

save them.

Not surprisingly it is done with save command. It can be called in
several different ways.

@ command form
save filename.mat’

@ functional form
save(filename.mat’)

e saves all workspace variables to the file ‘filename.mat’

Eugeniy Mikhailov (W&M) Practical Computing Lecture 04

Saving your results

.) N
Let’'s say you have calculated some intermediate results and want to otes

save them.

Not surprisingly it is done with save command. It can be called in
several different ways.

@ command form
save ‘filename.mat’

@ functional form
save('flename.mat’)

e saves all workspace variables to the file ‘filename.mat’
To save only var1, var2, and var3

@ save ‘filename.mat’ var1 var2 var3
@ save(flename.mat’, 'vart’, 'var2’, 'var3’);

@ fname="saved_variables.mat’; save(fname, 'var1’, 'var2’, 'var3’);
notice the use of apostrophes

i.e. save as a function expect strings for the arguments.

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 10/13

Saving: couple words of wisdom

Notes

By default Matlab saves into a binary format specific to Matlab. If you

work with Matlab only it is fine.
But | personally do not like formats which are not human readable at

least if they generate reasonably small sized files.
To generate human readable format you can use —ascii switch when

saving but such notation drops the variable name from the file.
So do not use —ascii to save multiple variables, save only one

variable per file
@ save -ascii flename.mat’ vari

@ save(filename.mat’, "-ascii’, 'vart’);

@ fname='saved_variables.mat’; save(fname, -ascii’, 'var1’);

Eugeniy Mikhailov (W&M) Practical Computing Lecture04 11/13

Loading your results

Notes
Now you want your results back to the workspace

Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 12/13

Loading your results

Notes
Now you want your results back to the workspace

It is done with 1oad command. It can be called in several different

ways.
@ command form

load filename.mat’
@ functional form

load(’filename.mat’)
o loads all variables from the file ‘filename.mat’

Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 12/13

Loading your results

Now you want your results back to the workspace

It is done with 1oad command. It can be called in several different
ways.

@ command form
load ‘filename.mat’

@ functional form
load(filename.mat’)

o loads all variables from the file ‘filename.mat’
To load only vart1, var2, and var3

@ load 'filename.mat’ var1 var2 var3
@ load(filename.mat’, 'vart’, 'var2’, 'var3’);

@ fname='variables.mat’; 1oad(fname, 'var1’, 'var2’, 'var3’);
o loads only variables var1, var2, and var3

notice the use of apostrophes, 1oad as a function expect strings for its
arguments.

Eugeniy Mikhailov (W&M)

Data Import

Practical Computing Lecture 04 12/13

Often you need to import data from other sources.
@ load is often smart enough

@ Otherwise right click on a data file in the Current Folder tab
and chose Import Data.

o Notice handy check mark Generate Matlab code for the case
where you have many similarly structured files to be imported.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 04 13/13

Notes

Notes

Notes

Notes

	Scripts
	Functions
	Saving and loading variables

