Introduction to Matlab

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 02

Eugeniy Mikhailov (W&M)

<ロト < 回 > < 回 > < 回 > < 回</p>

- integer
 - 123, -345, 0

<ロト < 回 > < 回 > < 回 > < 回</p>

- integer
 - 123, -345, 0
- real or float
 - 12.2344
 - 5.445454
 - engineering notation
 - 4.2323e-9 = 4.2323 × 10⁻⁹

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- integer
 - 123, -345, 0
- real or float
 - 12.2344
 - 5.445454
 - engineering notation
 - 4.2323e-9 = 4.2323 × 10⁻⁹
- complex
 - $i = \sqrt{-1} = 1i$
 - 34.23+21.21i
 - (1+1i) * (1-1i) = 2

</l>
< 回 > < 回 > < 回

- integer
 - 123, -345, 0
- real or float
 - 12.2344
 - 5.445454
 - engineering notation
 - 4.2323e-9 = 4.2323 × 10⁻⁹
- complex
 - $i = \sqrt{-1} = 1i$
 - 34.23+21.21i
 - (1+1i) * (1-1i) = 2
- strings (put your words inside apostrophes)
 - handy for file names and messages
 - 'programming is fun'
 - s='Williamsburg'

<回ト < 回ト < 回

Some built in constants and functions

- $\pi = 3.141592653589793238462643383279502 \cdots$
 - use pi
- trigonometry functions
 By default angle is in radians
 - sin, cos, tan, cot
 - asin, acos, atan, acot

sin(pi/2)=1

hyperbolic functions

- sinh, cosh, tanh, coth
- asinh, acosh, atanh, acoth
- logarithms
 - natural log
 - base of 10 log10
- opwer
 - x^y use x^y or alternatively power(x,y)
 - e^y use exp(y)

But can be done in degrees

- sind, cosd, tand, cotd
- asind, acosd, atand, acotd

sind(90)=1

Assignment operator

x = 1.2 + 3.4

Eugeniy Mikhailov (W&M)

イロト イロト イヨト イヨト

x = 1.2 + 3.4

Despite the look = is not an equality operator.

= is an assignment operator.

x = 1.2 + 3.4

Despite the look = is not an equality operator.

= is an assignment operator.

The expression above should be read as

- evaluate expression at the right hand side of equality symbol
- assign the result of the RHS to the variable on the left hand sign
- now variable x holds the value 4.6

We are free to use the **value** of the variable \mathbf{x} in any further expressions

> x + 4.2 ans = 8.8

• I > • I > • •

Once you typed some expressions in "Command window"

- type couple of first symbols of variable or function name
- hit tab and you will get
 - either fully typed name (if it is unique)
 - or little chart with choices
 - use <up> or <down> arrows to choose
 - alternatively <Ctrl-p>, <Ctrl-n>
 - then hit <enter> to make your choise

∃ ► 4

These are the most important commands

- docsearch word
 - will search for word in the help files and show up matched help files
 - example: docsearch trigonometry
- help name
 - output short help text into "Command window" about function/method named name
 - example: help sin

• doc name

- show a reference page about function/method named name in the help browser
- usually has more information compare to help name
- example: doc sin

イロト 人間ト イヨト イヨト

Look at the following Matlab expression

```
-2^{4*5} + \tan(pi/8+pi/8)^2
```

Guess the answer.

→ Ξ → +

4 A 1

Look at the following Matlab expression

```
-2^4*5 + tan(pi/8+pi/8)^2
```

Guess the answer.

```
- (2<sup>4</sup>)*5 + (tan( (pi/8+pi/8) ))<sup>2</sup>
```

- 同下 - 三下 - 三

Look at the following Matlab expression

```
-2^4*5 + tan(pi/8+pi/8)^2
```

Guess the answer.

```
- (2^4) *5 + (tan((pi/8+pi/8)))^2
```

 $-(16)*5+(tan((pi/4)))^2$

・ 同 ト ・ ヨ ト ・ ヨ

Look at the following Matlab expression

```
-2^{4*5} + \tan(pi/8+pi/8)^2
```

Guess the answer.

- (2^4)*5 + (tan((pi/8+pi/8)))^2
- (16)*5 + (tan((pi/4)))^2
-80 + (1)^2

= nar

・ 同 ト ・ ヨ ト ・ ヨ

Look at the following Matlab expression

```
-2^4*5 + tan(pi/8+pi/8)^2
```

Guess the answer.

- (2^4)*5 + (tan((pi/8+pi/8)))^2

 $-(16)*5+(tan((pi/4)))^2$

 $-80 + (1)^2 = -80 + 1$

Eugeniy Mikhailov (W&M)

= nar

・ 同 ト ・ ヨ ト ・ ヨ ト

Look at the following Matlab expression

```
-2^{4*5} + \tan(pi/8+pi/8)^2
```

Guess the answer.

 $- (2^4) + 5 + (tan((pi/8+pi/8)))^2$

 $-(16) * 5 + (tan((pi/4)))^2$

 $-80 + (1)^2 = -80 + 1 = -79$

= 900

イロト イロト イヨト イヨト

Look at the following Matlab expression

```
-2^{4*5} + \tan(pi/8+pi/8)^2
```

Guess the answer.

 $-(2^4)*5+(tan((pi/8+pi/8)))^2$

 $-(16)*5+(tan((pi/4)))^2$

 $-80 + (1)^2 = -80 + 1 = -79$

Rule of thumb: if not sure use extra parentheses ()

- 同下 - 三下 - 三

Look at the following Matlab expression

```
-2^{4*5} + \tan(pi/8+pi/8)^2
```

Guess the answer.

 $-(2^4)*5+(tan((pi/8+pi/8)))^2$

 $-(16)*5+(tan((pi/4)))^2$

 $-80 + (1)^2 = -80 + 1 = -79$

Rule of thumb: if not sure use extra parentheses ()

- Read more by executing doc precedence
- or searching for 'precedence' in the help browser.

< 同 ト < 三 ト

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1 × 1 matrix

▲ 同 ト ▲ 三 ト

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1 × 1 matrix

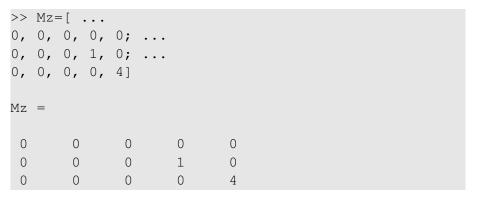
Let's create a 3×5 matrix (3 rows and 5 columns)

>>	Mz=zero	os(3,5)				
Mz	=					
0	0	0	0	0		
0	0	0	0	0		
0	0	0	0	0		

This is not the only way, but it is one which make sure that matrix is filled with zeros Note: it is possible to have more than 2 dimensional arrays.

Matrix elements assignment

>>	Mz(2, 4) = 1	010	2nd row,	4th	column
Mz	=				
0	0	0	0	0	
0	0	0	1	0	
0	0	0	0	0	


Matrix elements assignment

>>	Mz(2,4)=1	010	2nd row,	4th	column	
Mz	=					
0 0 0		0	0 1 0	0 0 0		
>>	Mz(3,5)=4	0/0	3rd row,	5th	column	
Mz	=					
0 0 0	0 0 0	0	0 1 0	0 0 4		
						₹ 990

Eugeniy Mikhailov (W&M)

Alternative way to assign a matrix

- comma separates column elements
- semicolon separates row elements

Notice · · · mark, which means that input continues on the next line

Eugeniy	Mikhailov	(W&M)
---------	-----------	-------

Strength of Matlab

Native matrix operations

Μ	Z =	=							
0	0	0	0	0	>> M	z+5			
0	0	0	1	0	ans :	=			
0	0	0	0	4	5	5	5	5	5
					5	5	5	6	5
					5	5	5	5	9

イロト イポト イヨト イ

Strength of Matlab

Native matrix operations

Mz	<u>z</u> =	=		
0	0	0	0	0
0	0	0	1	0
0	0	0	0	4

>> M	Iz+5				
ans	=				
5	5	5	5	5	
5 5	5	5	6	5	
5	5	5	5	9	
>> M	1z*2				
ans	=				
0	0	0	0	0	
0	0	0	2	0	
0	0	0	0	8	

More example on matrices operations

Mz =	>> Mz	+Mz			
0 0 0 0 0	ans =				
0 0 0 1 0	0	0	0	0	0
0 0 0 0 4	0	0	0	2	0
	0	0	0	0	8

More example on matrices operations

Mz =									
0	0	0	0	0					
0	0	0	1	0					
0	0	0	0	4					

>	>> Mz+Mz								
ē	ans =								
()	0	0	0	0				
()	0	0	2	0				
()	0	0	0	8				

Matrix multiplication according to the linear algebra rules

>> Mz	*Mz′	
ans =		
0	0	0
0	1	0
0	0	16

Here Mz' corresponds to transposed matrix Mz, i.e. Mz'(i,j) = Mz(j,i)

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

Mz =	>> sin(N	Az)			
0 0 0 0 0	ans =				
0 0 0 1 0	0	0	0	0	0
0 0 0 0 4	0	0	0	0.8415	0
	0	0	0	0	-0.7568

Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- *m* × 1 column vector
- 1 × m just a vector

Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- *m* × 1 column vector
- 1 × m just a vector

To create a vector

```
>> % use comma to separate column elements
>> v = [1, 2, 3, 4, 5, 6, 7, 8]
V =
1
        3 4 5 6
                                    7
    2
                                          8
>> % alternatively you can use spaces
>> v=[1 2 3 4 5 6 7 8];
>> % or mix of these two notations (NOT RECOMMENDED)
>> v=[1 2 3, 4, 5, 6 7 8]
V =
      2
        3 4
                        5
                              6
                                          8
1
                                  <ロト <回ト < 注ト < 注ト - 注一
```

Construction of column vector

```
>> vc=[1; 2; 3]
% use semicolon to separate row elements
vc =
1
2
3
```

= nar

イロト イポト イヨト イヨト

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - シッペ

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

```
>> vc=[1; 2; 3];
>> % note that ; after a statement suppresses output
>> Mc=[vc, vc, vc]
Mc =
1
  1 1
2 2 2
3
  3
       3
V
 =
                 5
     2 3 4
                       6
                           7
1
                                  8
>> Mv = [v; 2 * v; 3 * v]
Mv =
1
  2 3 4 5 6 7 8
 4 6 8 10 12 14 16
2
3
       9 12 15
     6
                        18 21 24
                            э
 Eugeniy Mikhailov (W&M)
                 Practical Computing
                                   Lecture 02
                                        16/26
```

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

[start, start+increment, ... , start+m*increment]

where

min(start, stop) < m*increment < max(start, stop)</pre>

イロト イ理ト イヨト イヨト

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

```
[ start, start+increment, ... , start+m*increment]
where
min(start,stop) ≤ m*increment ≤ max(start,stop)
>> v=5:2:11
v =
5 7 9 11
```

イロト イポト イヨト イヨト

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

```
[ start, start+increment, ... , start+m*increment]
where
min(start,stop) ≤ m*increment ≤ max(start,stop)
>> v=5:2:11
v =
5 7 9 11
It is also possible to have pegative increment
```

It is also possible to have negative increment

```
>> v2=12:-3:1

v2 =

12 	 9 	 6 	 3

Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 17/26
```

Colon (:) operator continued

Another form start: stop in this case increment = 1

>>	v1=1:5					
v1	=					
	1	2	3	4	5	

Colon (:) operator continued

Another form start: stop in this case increment = 1

>>	v1=1:5						
v1	=						
	1	2	3	4	5		
Not	ice that						
>>	v3=5:1						
v3	=						
	Empty r	natri>	x: 1-by	-0			

Produce somewhat unexpected result, since default increment is positive

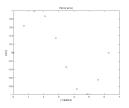
Eugeniy Mikhailov (W&M)

Slicing matrices

It is handy to choose a subset (block) from the matrix We have a matrix Mv with size 3×8 and we want to choose all elements from columns 2,5,6

>>	>> Mv							
Mv	=							
1	2	3	4	5	6	7	8	
2	4	6	8	10	12	14	16	
3	6	9	12	15	18	21	24	
>>	Mv(:,[2	2,5,6])					
an	s =							
2	5	6						
4	10	12						
6	15	18						

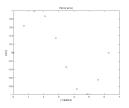
The meaning of the : now is choose all. Notice also that we use vector to specify desired columns


Eugeniy Mikhailov (W&M)

Plotting

Suppose you have a vector with values of x coordinates and we want to plot sin(x).

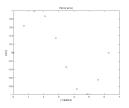
```
>> x=linspace(0,2*pi,10)
x =
 0.6981 1.3963 2.0944 2.7925 3.4907
0
4.1888 4.8869 5.5851 6.2832
>> y=sin(x)
y =
0
 0.6428 0.9848 0.8660 0.3420 -0.3420
-0.8660 -0.9848 -0.6428 -0.0000
>> plot(x,y,'o') % alternatively plot(x,sin(x),'o')
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
For 3D plots, please see help files for plot3, mesh, surf =, = ogo
```


Eugeniy Mikhailov (W&M)

Now we want to save the figure, use print

>> print('-dpdf', 'sin_of_x')

This will generate file *sin_of_x.pdf* notice automatic file extension addition.



Now we want to save the figure, use print

>> print('-dpdf', 'sin_of_x')

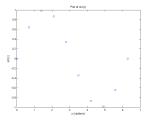
This will generate file *sin_of_x.pdf* notice automatic file extension addition.

The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png"...)

Now we want to save the figure, use print

>> print('-dpdf', 'sin_of_x')

This will generate file *sin_of_x.pdf* notice automatic file extension addition.


The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png"...) Note matlab **still** generates *pdf* with a lot of empty space. It is better to save into *eps* format and then convert it to a desired one.

```
>> print('-deps', 'sin_of_x')
```

To generate a 'png' file

>> print('-dpng', '-r100', 'sin_of_x')

By default figure size is 8×6 inches, the '-r' switch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be 800×600 pixels.

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

• . *

イロト イポト イヨト イヨト

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

• . *

イロト イポト イヨト イヨト

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

• . * >> x=1:3x = 1 2 3 >> x*x % will generate an error >> x.*x % equivalent to x.^2 (see below) ans = 1 49 >> x.^2 4 9 ans = 1• ./ >> x./x 1 1 ans = 1 <ロト <回ト < 注ト < 注ト - 注一

Eugeniy Mikhailov (W&M)

Special array arithmetic operators continued

Linear algebra rules

>> m*m				
ans =				
30	36	42		
66	81	96		
102	126	150		

Element wise operation

>> m.*m					
ans =					
1	4	9			
16	25	36			
49	64	81			

Special array arithmetic operator . ^

>>	m=[1,2,	3;4,5,6;	7,8,9]		
m =	=				
1	2	3			
4	5	6			
7	8	9			
Linear algebra rules			Element wise o	peration	
>> 1	m^m % ui	ndefined	>> m.^m		
			ans =		
			1	4	27
			256	3125	46656
			823543	16777216	387420489

∃ ⊳ -

Special array arithmetic operator ./

Linear algebra rules

>> m/m %	unity	matrix
ans =		
1 0	0	
0 1	0	
0 0	1	

Element wise operation

>>	m./m	%matrix	of	ones
ans	5 =			
1	1	1		
1	1	1		
1	1	1		