Homework 04

General comments:

- Do not forget to run some test cases.
- Matlab has built-in numerical integration methods. For example quad is one of them. You might check validity of your implementations with answers produced by this Matlab built-in function. quad requires your function to be able to work a vector argument, otherwise it will fail requires your function to be able to work with arrays, otherwise it will fail
- Of course it is always better when you do it vs the analytically calculated integral.

Problem 1 (2 points)

Implement the rectangle numerical integration method. Call you function rectInt (f,a,b,N), where a and b limits of integration, N the number of points, and f is handle to the function.

Problem 2 (3 points)

Implement the trapezoidal numerical integration method. Call you function trapezInt (f , a, b, N), where a and b limits of integration, N the number of points, and f is handle to the function.

Problem 3 (5 points)

Implement the Simpson numerical integration method. Call you function simpsonInt (f, a, b, N), where a and b limits of integration, N the number of points, and f is handle to the function. Remember about special form of $\mathrm{N}=2 \mathrm{k}+1$.

Problem 4 (5 points)

Implement the Monte-Carlo numerical integration method. Call you function montecarloInt (f, a, b, N), where a and b limits of integration, N the number of points, and f is handle to the function.

Problem 5 (5 points)

For your tests calculate

$$
\int_{0}^{10}\left[\exp (-x)+(x / 1000)^{3}\right] d x
$$

Plot the absolute error of integration of the above 4 methods vs different number of points N . Try to do it from small $\mathrm{N}=3$ to $\mathrm{N}=10^{6}$. Use loglog plotting function for better representation (make sure that you have enough points in all areas of the plot). Why error start to grow with a larger N? Does it grows for all methods?

Problem 6 (5 points)

Calculate

$$
\int_{0}^{\pi / 2} \sin (401 x) d x
$$

Compare your result with exact answer $1 / 401$. Provide a discussion about required number of point to calculate such integral.

