Operational amplifiers

Eugeniy E. Mikhailov
The College of William \& Mary

Operational amplifiers (Op-Amp)

- $V_{\text {out }}=A\left(V_{+}-V_{-}\right)$thus sometimes called differential amplifiers
- A is open loop gain
- A is frequency dependent
- $A=10^{5} \ldots 10^{6}$ at DC
- $A \rightarrow 0$ at high frequency (roll off) this limits operational bandwidth (typically in $\mathrm{MHz} \ldots \mathrm{GHz}$ range)
- input impedances are high $10^{6} \ldots 10^{14} \Omega$
- output impedances are low $0.1 \ldots 10 \Omega$
- however output current usually limited to 10 mA
- it is super easy to design with them

If Op-Amps are so great why did we learn transistors?

- some times one transistor
is enough and op-amps are more expensive
- op-amps are made of transistors so to understand their limits we need to know how transistors behave
- op-amps require bipolar power supply
- remember that op-amps cannot source a lot of current/power while transistors can (recall our transistor controlled switch for a bulb)
Eugeniy Mikhailov (Wem)
Very very bad amplifier !!!

ut A depends on everythin
- temperature
- power supply voltage
- input voltage
- frequency
- ... and so on

$$
V_{\text {out }}=A V_{\text {in }}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LM741 (introduced in 1968) internal schematic

So, combine op-amps and transistors for a power circuits. Otherwise do your circuit with op-amps.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Leoture $09 \quad 3 / 10$
-

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Follower or Buffer

$$
V_{\text {out }}=\frac{A}{A+1} V_{\text {in }}
$$

Gain and impedances of ideal Op-Amp $(A \gg 1)$

$$
G_{\text {ideal }}=1
$$

$$
Z_{\text {in }}=\infty, Z_{\text {out }}=0
$$

notice that with negative feedback $V_{+} \approx V_{-}$
Non-inverting amplifier

$$
V_{\text {out }}=\left(1+\frac{R_{2}}{R 1}\right) V_{\text {in }} \frac{A}{A+\left(1+\frac{R_{2}}{R_{1}}\right)}
$$

Gain and impedances of ideal Op-Amp $(A \gg 1)$

$$
\begin{gathered}
G_{\text {ideal }}=1+\frac{R_{2}}{R_{1}} \\
Z_{\text {in }}=\infty, Z_{\text {out }}=0
\end{gathered}
$$

notice that with negative feedback $V_{+} \approx V_{-}$

Op-amps golden rules

If negative feedback is applied and $A(f) \gg 1$ (open circuit gain at the frequency of interest)

- there is no current into the inputs
- $V_{-}=V_{+}$

Gain of non ideal Op-Amp $(A \gg 1)$

$$
G=G_{i d e a l} \| A=\frac{G_{\text {ideal }} A}{G_{\text {ideal }}+A}
$$

Inverting amplifier

Gain and impedances of ideal Op-Amp $(A \gg 1)$

$$
\begin{gathered}
G_{\text {ideal }}=-\frac{R_{2}}{R_{1}} \\
Z_{\text {in }}=R_{1}, Z_{\text {out }}=0
\end{gathered}
$$

notice that with negative feedback $V_{+} \approx V_{-}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

for ideal Op-Amp $(A \gg 1)$

$$
\begin{gathered}
V_{\text {out }}=-\left(\frac{V_{\text {in1 } 1}}{R_{1}}+\frac{V_{\text {in } 2}}{R_{2}}+\frac{V_{\text {in3 }}}{R_{3}}+\cdots+\frac{V_{\text {inN }}}{R_{N}}\right) R_{f} \\
Z_{\text {inN }}=R_{N}, Z_{\text {out }}=0
\end{gathered}
$$

Differential amplifier

for ideal Op-Amp $(A \gg 1)$

$$
\begin{gathered}
V_{\text {out }}=\frac{R_{4}}{R_{1}} \frac{R_{1}+R_{2}}{R_{3}+R_{4}} v_{\text {in } 2}-\frac{R_{2}}{R_{1}} V_{\text {in } 1} \\
Z_{\text {out }}=0
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

