
Notes

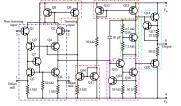
Notes

Notes

If Op-Amps are so great why did we learn transistors?

- some times one transistor is enough and op-amps are more expensive
- op-amps are made of transistors so to understand their limits we need to know how transistors behave
- op-amps require bipolar power supply
- remember that op-amps cannot source a lot of current/power while transistors can (recall our transistor controlled switch for a bulb)
 Eugenly Mikhallov (W&M)

Very very bad amplifier !!!

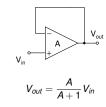

Gain

 $V_{out} = AV_{in}$

Electronics 1

- But A depends on everything
- temperature
- power supply voltage
- input voltage
- frequency
- ...and so on

LM741 (introduced in 1968) internal schematic


So, combine op-amps and transistors for a power circuits. Otherwise do your circuit with op-amps.

cs 1

Lecture 09

4/10

Notes

Gain and impedances of ideal Op-Amp ($A \gg 1$)
$G_{ideal} = 1$
$Z_{in} = \infty, Z_{out} = 0$
notice that with negative feedback $V_+ pprox V$

Electronics 1

. .

Lecture 09

Lecture 09

Lecture 09

Non-inverting amplifier

Eugeniy Mikhailov (W&M)

$$V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in} \frac{A}{A + \left(1 + \frac{R_2}{R_1}\right)}$$

Gain and impedances of ideal Op-Amp ($A \gg 1$)

$$G_{\textit{ideal}} = 1 + rac{R_2}{R_1}$$
 $Z_{\textit{in}} = \infty, Z_{\textit{out}} = 0$

notice that with negative feedback $V_+ pprox V_-$

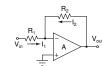
Op-amps golden rules

Eugeniy Mikhailov (W&M)

Notes

If negative feedback is applied and $A(f) \gg 1$ (open circuit gain at the frequency of interest)

Electronics 1


• there is no current into the inputs

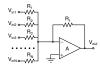
• $V_- = V_+$

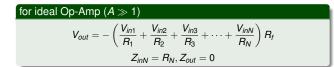
Gain of non ideal Op-Amp ($A \gg 1$)

 $G = G_{ideal} || {m A} = rac{G_{ideal} {m A}}{G_{ideal} + {m A}}$

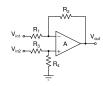
Eugeniy Mikhailov (W&M) Inverting amplifier

Electronics


Gain and impedances of ideal Op-Amp ($A \gg 1$) $G_{ideal} = -\frac{R_2}{R_1}$ $Z_{in} = R_1, Z_{out} = 0$


notice that with negative feedback $V_+ pprox V_-$

Notes


Notes

Notes

Eugeniy Mikhailov (W&M) Electronics 1
Differential amplifier

for ideal Op-Amp $(A \gg 1)$

Eugeniy Mikhailov (W&M)

 $V_{out} = rac{R_4}{R_1} rac{R_1 + R_2}{R_3 + R_4} V_{in2} - rac{R_2}{R_1} V_{in1} \ Z_{out} = 0$

Electronics 1

 $\Box \mapsto \neg \Box D \mapsto \neg \in \Xi \Rightarrow$

Lecture 09

9/10

Notes

Notes

Notes

Notes