Transistors applications: AC amplifiers

Eugeniy E. Mikhailov
The College of William & Mary

Lecture 07

Summary of simple emitter follower

\[V_{cc} \]
\[V_{in} \]
\[V_{out} \]
\[R_e \]

Advantages:
- input impedance increase \(Z_{in} = \beta R_e \)
- power/ current gain
- output does not depend on \(\beta \)
- simple

Disadvantages:
- input signal must be positive
- even more it should be above 0.6 V
- no voltage gain

Real life signal

In real life signals usually swing around zero.
In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower

Solution 2: AC-coupled biased-amplifier
Push-Pull emitter follower improved

[Diagram of a Push-Pull emitter follower circuit]

AC-coupled emitter follower

[Diagram of an AC-coupled emitter follower circuit]

Design rules
- maximum output swing
 - $V_o = V_{cc}/2$
- disregarding $V_{be} = 0.6$ V
 - $V_o = V_{be} = V_{cc}/2$
 - thus $R_i = R_0$
- quiescent current $I_q = V_o/R_e$
- we want $I_{R_1+R_2} \gg I_b$
 - factor of 10 for a safe margin
 - $I_{R_1+R_2} = 10I_b = 10I_e/\beta$
 - thus $R_1 = R_2 = R_{be}/10$

Notes
AC-coupled emitter follower: capacitors choice

From AC point of view

- Input is RC high-pass
 - $C = C_1$
 - $R = R_1 | \beta R_e | R_c$
 - $f_{3dB} = \frac{1}{2 \pi (R_1 | \beta R_e | R_c)}$
 - with above rules $R \approx R_c / 2$

Notes

AC-coupled emitter follower: capacitors choice

From AC point of view

- Input is RC high-pass
 - $C = C_1$
 - $R = R_1 | \beta R_e | R_c$
 - $f_{3dB} = \frac{1}{2 \pi (R_1 | \beta R_e | R_c)}$
 - with above rules $R \approx R_c / 2$

- Output is also RC high-pass
 - $C = C_2$
 - $R = R_L$
 - $f_{3dB} = \frac{1}{2 \pi R_L}$
 - for unloaded filter $R_L > R_e$
 - factor of 10 for a safe margin
 - $R_L = 10 R_e$

Notes

Common emitter (inverting) amplifier

Notes
Common emitter (inverting) amplifier

- \(I_C = I_B = (V_T - 0.6\ V) / R_E \)
- \(V_{out} = V_C - R_C I_C \)
- \(V_{out} = V_C - R_C (V_T - 0.6\ V) / R_E \)
- \(V_{out} = (V_C + (0.6\ V) R_C / R_E) - V_B R_C / R_E \)
- gain \(G = -R_C / R_E \)
- attractive to put \(R_E = 0 \)
 - transistor model fails
 - transistor emitter resistance \(r_e = 25mV / I_e \)
 - gain \(G = -R_C / R_E \)

Notes

AC-coupled common emitter (inverting) amplifier

Design rules
- chose gain \(G = R_C / R_E \)
- maximum output swing
 - \(V_C = V_{cc} / 2 \)
- quiescent current
 - \(I_C = (V_{cc} - V_C) / R_C = V_{cc} / 2 R_C \)
 - \(R_E = V_{cc} / (2 I_C) \)
 - \(R_E = R_C / G \)
- we want \(I_E + I_B \gg I_C \)
 - factor of 10 for a safe margin
- \(I_E + I_B = 10 I_C = 10 I_e / 3 \)
- \(R_E + R_B = V_{cc} / (10 I_e) \)
- \(V_B = V_C + 0.6 \)
- \(R_E / (R_1 + R_2) = V_B / V_{cc} \)

Notes

AC-coupled (inverting) amplifier signal output impedance

Notes
AC-coupled (inverting) amplifier signal output impedance

In the pass band we can neglect capacitors

\[V_{\text{out}} = V_{\text{cc}} - I_c R_c = V_{\text{cc}} - (I_{\text{ce}} + I_e) R_c \]
\[= (V_{\text{cc}} - I_{\text{ce}} R_c) - I_e R_c \]
\[= V_{\text{in}} - I_e R_c \]

Thévenin's equivalent

\[V_{\text{th}} = V_{\text{cc}} - I_{\text{ce}} R_c \]
\[R_{\text{th}} = R_c \]

Rule of 10 must be satisfied

\[R_L \geq 10 R_c \]

Notes
AC-coupled (inverting) amplifier capacitors choice

Input equivalent

![Input Equivalent Diagram]

Output equivalent

![Output Equivalent Diagram]

See notes about AC-coupled emitter follower

AC-coupled (inverting) amplifier with HF gain boost

From
To

![HF Gain Boost Diagram]

Think what happens with equivalent impedance of R_e at high frequencies

Notes