Notes
Transistors applications: AC amplifiers

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 07

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

In real life signals usually swing around zero.

We need to do something with our simple emitter follower.

Solution 1: Push-Pull follower
Solution 2: AC-coupled biased-amplifier
Elugeny MKhaliov (NEM)

NPN emitter follower

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NPN and PNP emitter follower

NPN emitter follower

$v_{\text {in }}(t)=v_{\text {out }}(t)$

Notes

\qquad
\qquad
\qquad
\qquad
PNP emitter follower

Eugeniy Mikhailov (Wem)	Electronics 1	Lecture 07
NPN and PNP emitter follower		
NPN emitter follower		
PNP emitter follower		
Eugeniy Mikhailov (Wem)	Electronics 1	Lecture 07 4 4/14
Push-Pull emitt	lower	

Notes

Push-Pull follower crossovers

$$
V_{\text {in }}(t)-V_{\text {out }}(t)
$$

Push-Pull follower crossovers

$\mathrm{V}_{\text {in }}(\mathrm{t})=\mathrm{V}_{\text {out }}(\mathrm{t})$
Eugeny MWhailo (Wam Electroncs 1 Lecture 07
Push-Pull follower crossovers

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled emitter follower

Notes

Design rules

- maximum output swing - $V_{e}=V_{c c} / 2$
- disregarding $V_{b e}=0.6 \mathrm{~V}$
- $V_{b}=V_{e}=V_{c c} / 2$
- thus $R_{1}=R_{2}$
- quiescent current $I_{e}=V_{e} / R_{e}$
- we want $I_{R_{1}+R_{2}} \gg I_{b}$
- factor of 10 for a safe margin
$I_{R_{1}+R_{2}}=10 I_{b}=10 I_{e} / \beta$
-thus $R_{1}=R_{2}=R_{e} \beta / 10$

From AC point of view

AC-coupled emitter follower: capacitors choice

From AC point of view

- Input is RC high-pass
- $C=C_{1}$
- $R=R_{1}\left\|R_{2}\right\| \beta R_{e}$
- $f_{3 a b}=\frac{1}{2 \pi} \frac{1}{C_{1}\left(R_{1}\left\|R_{2}\right\| \beta R_{e}\right)}$
- with above rules $R \approx R_{1} / 2$

From AC point of view

- Input is RC high-pass
- $C=C_{1}$
- $R=R_{1}\left\|R_{2}\right\| \beta R_{e}$
- $f_{3 d b}=\frac{1}{2 \pi} \frac{1}{C_{1}\left(R_{1}\left\|R_{2}\right\| \beta R_{e}\right)}$
- with above rules $R \approx R_{1} / 2$
- Output is also RC high-pass
- $C=C_{2}$
- $R=R_{L}$
- $f_{3 d b}=\frac{1}{2 \pi} \frac{1}{C_{2} B_{L}}$
- for unloaded filter $R_{L} \gg R_{\theta}$

$$
\text { - factor of } 10 \text { for a safe margin }
$$ $R_{L}=10 R_{e}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- $I_{c}=I_{e}=\left(V_{\text {in }}-0.6 \mathrm{~V}\right) / R_{e}$
- $V_{\text {out }}=V_{c c}-R_{c} I_{c}$
- $V_{\text {out }}=V_{c c}-R_{c}\left(V_{\text {in }}-0.6 V\right) / R_{e}$
- $V_{\text {out }}=\left(V_{c c}+(0.6 V) R_{c} / R_{e}\right)-V_{\text {in }} R_{c} / R_{e}$
- gain $G=-R_{c} / R_{e}$
- attractive to put $R_{e}=0$
- transistor model fails
- transistor emitter resistance $r_{e}=25 \mathrm{mV} / I_{c}$
- gain $G=-R_{c} / r_{e}$

AC-coupled common emitter (inverting) amplifier

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled common emitter (inverting) amplifier

Design rules

- chose gain $G=R_{c} / R_{e}$
- maximum output swing - $V_{c}=V_{c c} / 2$
- quiescent current
$I_{c}=\left(V_{c c}-V_{c}\right) / R_{c}=V_{c c} / 2 R_{c}$
- $R_{c}=V_{c c} /\left(2 I_{c}\right)$
- $R_{e}=R_{c} / G$
- we want $I_{R_{1}+R_{2}} \gg I_{b}$
- factor of 10 for a safe margin
$I_{R_{1}+R_{2}}=10 I_{b}=10 I_{c} / \beta$
- $R_{1}+R_{2}=V_{c c} \beta /\left(10 I_{c}\right)$
- $V_{b}=V_{e}+0.6$
- $R_{2} /(R 1+R 2)=V_{b} / V_{c c}$

AC-coupled (inverting) amplifier signal output
impedance

Notes

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled (inverting) amplifier signal output

In the pass band we can neglect capacitors

$V_{\text {out }}=V_{c c}-I_{c} R_{c}=V_{c c}-\left(I_{c e}+I_{L}\right) R_{c}$
$=\left(V_{c C}-I_{c e} R_{C}\right)-I_{L} R_{C}$
$=V_{t h}-I_{L} R_{t h}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled (inverting) amplifier signal output
impedance
In the pass band we can neglect capacitors

Rule of 10 must be satisfied

$$
R_{L} \geq 10 R_{c}
$$

AC-coupled (inverting) amplifier capacitors choice

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled (inverting) amplifier capacitors choice

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AC-coupled (inverting) amplifier capacitors choice

See notes about AC-coupled emitter follower

AC-coupled (inverting) amplifier with HF gain boost

From

To

Think what happens with equivalent impedance of R_{e} at high frequencies

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

