Transistors.

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06

- invented in 1947
- amplify current
- lower power consumption
- cheap for mass production
- robust to vibration
- long working time (decades) when properly used
- replaced vacuum tube
- building block of modern electronics
- Some areas where vacuum tube are still good
 - ultra high voltage applications (more then 1000 V)
 - radiation prone locations

Bipolar junction Transistor (BJT)

NPN-transistor

PNP-transistor

- Base-emitter current (*I*_{be})
- Collector-emitter current (*I_{ce}*)
- Base-emitter voltage difference (*V_{be}* = *V_b V_e*)
- Collector-emitter voltage difference (*V_{ce}* = *V_c V_e*)

To support shown currents direction

▲ 同 ト ▲ 三 ト

To support shown currents direction

• V_{ce} > 0

イロト イロト イヨト

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0

• since, it is forward biased diode $V_{be} \approx 0.6$ V

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if *V_{cb}* < 0 transistor goes to saturation and cannot be described by the following simple rule.

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if *V_{cb}* < 0 transistor goes to saturation and cannot be described by the following simple rule.
- If above holds true then

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
 - since, it is forward biased diode $\textit{V}_{\textit{be}} \approx 0.6 \; \text{V}$
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if *V_{cb}* < 0 transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

• $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if *V_{cb}* < 0 transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes h_{fe}) \approx 100...200

To support shown currents direction

- V_{ce} > 0
- V_{be} > 0
 - since, it is forward biased diode $\textit{V}_{\textit{be}} \approx 0.6 \; \text{V}$
- *V_{cb}* > 0
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if *V_{cb}* < 0 transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes h_{fe}) \approx 100...200

•
$$I_e = I_{be} + I_{ce} = (\beta + 1)I_{be} \approx \beta I_{be}$$

Apply the same rules as before for NPN BJT but multiply currents and voltages by -1. Hints

- the arrow indicates the direction in which current is supposed to flow.
- the arrow always connects the base and emitter.

Remember β is not a constant! It depends on many parameters

- temperature
- collector current
- varies from device to device even in the same batch

Good design should not depend on β value.

Current through the load resistor does not depend on the load resistance.

Current through the load resistor does not depend on the load resistance.

This is actually a sample of bad design since the current through the load depends on β .

Current through the load resistor does not depend on the load resistance.

This is actually a sample of bad design since the current through the load depends on β .

$$V_c = V_{cc} - R_L I_L$$

Current through the load resistor does not depend on the load resistance.

$$I_{L} = I_{c} = \beta I_{be} = \beta \frac{V_{ctrl} - .6V}{R_{set}}$$

This is actually a sample of bad design since the current through the load depends on β .

$$V_c = V_{cc} - R_L I_L$$

remember that V_c must be $> V_b$ thus current cannot be bigger then the saturation current

$$I_{sat} = max(I_L) \leq rac{V_{cc} - V_b}{R_L} pprox rac{V_{cc}}{R_L}$$

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Since
$$V_{be} \leq V_{ce}$$
, $I_{be} = I_{ce}/\beta \ll I_{ce}$, and $I_{ce} = I_L$

$$P_{trans} \approx V_{ce} I_{ce} = R_{trans} I_L^2$$

Maximum power dissipation in transistor

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

$$max(P_{trans}) = \frac{V_{cc}^2}{4R_L}$$
, when $I_L = \frac{V_{cc}}{2R_L}$

When properly designed outcome does not depend on reasonable variations of β

Recall that typically $\beta = 100...200$ We will assume the worst case scenario $\beta = 10$ Notice that R_L limits collector current

$$I_L = \frac{V_{cc}}{R_L}$$

$$_{be} = rac{V_{ctrl} - .6V}{R_b} = rac{I_L}{eta}$$

$$R_b \leq rac{V_{ctrl} - .6V}{V_{cc}}eta R_L$$

$$V_{out} = V_{in} - 0.6V$$

Eugeniy Mikhailov (W&M)

イロト イロト イヨト イヨト

$$V_{out} = V_{in} - 0.6V$$

Gain. What gain?

Image: A match a ma

$$V_{out} = V_{in} - 0.6V$$

Gain. What gain? We achieved the input impedance increase.

$$R_{input} = rac{V_{in}}{I_{be}} pprox R_L(eta+1)$$

As result our V_{in} source is not overloaded and our load receive all required current (as long as the collector power supply can support it).