Transistors.

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06
Transistors

- invented in 1947
- amplify current
- lower power consumption
- cheap for mass production
- robust to vibration
- long working time (decades) when properly used
- replaced vacuum tube
- building block of modern electronics

Some areas where vacuum tube are still good
- ultra high voltage applications (more then 1000 V)
- radiation prone locations
Bipolar junction Transistor (BJT)

NPN-transistor

PNP-transistor
Notation

- Base-emitter current (I_{be})
- Collector-emitter current (I_{ce})
- Base-emitter voltage difference
 ($V_{be} = V_b - V_e$)
- Collector-emitter voltage difference
 ($V_{ce} = V_c - V_e$)
Simple NPN-transistor rules

To support shown currents direction

\[V_{ce} > 0 \]
\[V_{be} > 0 \] since it is forward biased diode
\[V_{be} \approx 0.6 \text{ V} \]
\[V_{cb} > 0 \] since it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter

If above holds true then
\[I_{ce} = \beta I_{be} \] thus a BJT is a current amplifier

the static forward current transfer ratio \(\beta \) (or sometimes \(h_{fe} \)) \(\approx 100 \) ...200

\[I_e = I_{be} + I_{ce} = (\beta + 1) I_{be} \approx \beta I_{be} \]
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$

Since it is forward biased diode, $V_{be} \approx 0.6 \text{ V}$.

Since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

$I_{ce} = \beta I_{be}$

thus a BJT is a current amplifier

The static forward current transfer ratio β (or sometimes h_{fe}) $\approx 100\ldots200$

$I_{e} = I_{be} + I_{ce} = (\beta + 1) I_{be} \approx \beta I_{be}$
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$

 since, it is forward biased diode $V_{be} \approx 0.6$ V

V_{ce} V_{be} V_{cb}

If above holds true then $I_{ce} = \beta I_{be}$

thus a BJT is a current amplifier

the static forward current transfer ratio β (or sometimes h_{fe}) $\approx 100 \ldots 200$

$I_e = I_{be} + I_{ce} = (\beta + 1) I_{be} \approx \beta I_{be}$
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
- $V_{cb} > 0$

 Since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$

 - $V_{cb} > 0$
 - Since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - If $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
- since, it is forward biased diode $V_{be} \approx 0.6$ V
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

$$I_{ce} = \beta I_{be}$$
thus a BJT is a current amplifier

The static forward current transfer ratio

β (or sometimes h_{fe}) $\approx 100...200$

$$I_E = I_{be} + I_{ce} = (\beta + 1)I_{be} \approx \beta I_{be}$$
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes h_{fe}) $\approx 100 \ldots 200$
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6$ V
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio
 - β (or sometimes h_{fe}) $\approx 100 \ldots 200$
- $I_e = I_{be} + I_{ce} = (\beta + 1)I_{be} \approx \beta I_{be}$
Simple PNP-transistor rules

Apply the same rules as before for NPN BJT but multiply currents and voltages by -1.

Hints

- the arrow indicates the direction in which current is supposed to flow.
- the arrow always connects the base and emitter.
Design considerations for β

Remember β is not a constant!
It depends on many parameters
- temperature
- collector current
- varies from device to device even in the same batch

Good design should not depend on β value.
Current through the load resistor does not depend on the load resistance.

\[I_L = I_C = \beta I_{be} = \beta \frac{V_{ctrl} - 0.6V}{R_{set}} \]
Current through the load resistor does not depend on the load resistance.

\[I_L = I_C = \beta I_{be} = \beta \frac{V_{ctrl} - .6V}{R_{set}} \]

This is actually a sample of bad design since the current through the load depends on \(\beta \).
Current through the load resistor does not depend on the load resistance.

\[I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - 0.6V}{R_{set}} \]

This is actually a sample of bad design since the current through the load depends on \(\beta \).

\[V_c = V_{cc} - R_L I_L \]
Current through the load resistor does not depend on the load resistance.

\[I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6V}{R_{set}} \]

This is actually a sample of bad design since the current through the load depends on \(\beta \).

\[V_c = V_{cc} - R_L I_L \]

remember that \(V_c \) must be \(> V_b \) thus current cannot be bigger then the saturation current

\[I_{sat} = \max(I_L) \leq \frac{V_{cc} - V_b}{R_L} \approx \frac{V_{cc}}{R_L} \]
From V_{cc} point of view, left schematic is equivalent to the right one.

$$R_{\text{trans}} = \frac{V_c}{I_L} = \frac{V_{cc} - I_L R_L}{I_L}$$

Transistor

Tran(sform)-(re)sistor
Transistor power dissipation

\[P_{\text{trans}} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce} \]

Since

\[V_{be} \leq V_{ce}, I_{be} = \frac{I_{ce}}{\beta} \ll I_{ce}, \text{ and } I_{ce} = I_L \]

\[P_{\text{trans}} \approx V_{ce}I_{ce} = R_{\text{trans}}I_L^2 \]
Transistor power dissipation

\[P_{\text{trans}} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce} \]

Since
\[V_{be} \leq V_{ce}, \quad I_{be} = I_{ce}/\beta \ll I_{ce}, \text{ and } I_{ce} = I_L \]

\[P_{\text{trans}} \approx V_{ce}I_{ce} = R_{\text{trans}}I_L^2 \]

Maximum power dissipation in transistor
Transistor power dissipation

\[P_{\text{trans}} = P_{\text{be}} + P_{\text{ce}} = V_{\text{be}}I_{\text{be}} + V_{\text{ce}}I_{\text{ce}} \]

Since \(V_{\text{be}} \leq V_{\text{ce}} \), \(I_{\text{be}} = I_{\text{ce}}/\beta \ll I_{\text{ce}} \), and \(I_{\text{ce}} = I_{L} \)

\[P_{\text{trans}} \approx V_{\text{ce}}I_{\text{ce}} = R_{\text{trans}}I_{L}^{2} \]

Maximum power dissipation in transistor is when \(R_{\text{trans}} = R_{L} \)
Transistor power dissipation

\[P_{\text{trans}} = P_{\text{be}} + P_{\text{ce}} = V_{\text{be}} I_{\text{be}} + V_{\text{ce}} I_{\text{ce}} \]

Since

\[V_{\text{be}} \leq V_{\text{ce}}, \quad I_{\text{be}} = \frac{I_{\text{ce}}}{\beta} \ll I_{\text{ce}}, \quad \text{and} \quad I_{\text{ce}} = I_L \]

\[P_{\text{trans}} \approx V_{\text{ce}} I_{\text{ce}} = R_{\text{trans}} I_L^2 \]

Maximum power dissipation in transistor is when \(R_{\text{trans}} = R_L \)

\[\max(P_{\text{trans}}) = \frac{V_{cc}^2}{4R_L}, \quad \text{when} \quad I_L = \frac{V_{cc}}{2R_L} \]
Voltage controlled switch

When properly designed outcome does not depend on reasonable variations of β

Recall that typically $\beta = 100 \ldots 200$

We will assume the worst case scenario $\beta = 10$

Notice that R_L limits collector current

$$I_L = \frac{V_{cc}}{R_L}$$

$$I_{be} = \frac{V_{ctrl} - .6V}{R_b} = \frac{I_L}{\beta}$$

$$R_b \leq \frac{V_{ctrl} - .6V}{V_{cc}} \beta R_L$$
Emitter follower

![Emitter follower diagram]

\[V_{\text{out}} = V_{\text{in}} - 0.6 \, V \]

Gain. What gain?

We achieved the input impedance increase.

\[R_{\text{input}} = \frac{V_{\text{in}}}{I_{\text{be}}} \approx R_L (\beta + 1) \]

As a result, our input source is not overloaded, and our load receives all required current (as long as the collector power supply can support it).
The emitter follower configuration is shown with the voltage relationships:

\[V_{out} = V_{in} - 0.6\, V \]

Gain. What gain?

Gain. What gain?
Emitter follower

\[V_{out} = V_{in} - 0.6V \]

Gain. What gain?
We achieved the input impedance increase.

\[R_{input} = \frac{V_{in}}{I_{be}} \approx R_L(\beta + 1) \]

As result our \(V_{in} \) source is not overloaded and our load receive all required current (as long as the collector power supply can support it).