Transistors

invented in 1947
- amplify current
- lower power consumption
- cheap for mass production
- robust to vibration
- long working time (decades) when properly used
- replaced vacuum tube
- building block of modern electronics

Some areas where vacuum tube are still good
- ultra high voltage applications (more then 1000 V)
- radiation prone locations

Bipolar junction Transistor (BJT)

NPN-transistor

PNP-transistor

Notation

- Base-emitter current (I_{be})
- Collector-emitter current (I_{ce})
- Base-emitter voltage difference ($V_{be} = V_B - V_E$)
- Collector-emitter voltage difference ($V_{ce} = V_C - V_E$)
Simple NPN-transistor rules

To support shown currents direction

- $V_{ce} > 0$
- $V_{be} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then

- $I_{ce} = \beta I_{be}$
 - thus a BJT is a current amplifier
- the static forward current transfer ratio
 - β (or sometimes h_{fe}) $\approx 100 \ldots 200$
- $I_e = I_{be} + I_{ce} = (\beta + 1) I_{be} \approx \beta I_{be}$
Simple NPN-transistor rules

To support shown currents direction
- $V_{CE} > 0$
- $V_{BE} > 0$
 - since, it is forward biased diode $V_{be} \approx 0.6\,\text{V}$
- $V_{CB} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{CB} < 0$ transistor goes to saturation and cannot be described by the following simple rule.

If above holds true then
- $I_{CE} = \beta I_{BE}$ thus a BJT is a current amplifier

the static forward current transfer ratio
β (or sometimes h_{fe}) $\approx 100\ldots200$

$I_{CE} = I_{BE} + I_{CE} = (\beta + 1)I_{BE} \approx \beta I_{BE}$
Simple PNP-transistor rules

Apply the same rules as before for NPN BJT but multiply currents and voltages by -1.

Hints
- the arrow indicates the direction in which current is supposed to flow.
- the arrow always connects the base and emitter.

Design considerations for β

Remember β is not a constant!
It depends on many parameters
- temperature
- collector current
- varies from device to device even in the same batch

Good design should not depend on β value.

Constant current source

Current through the load resistor does not depend on the load resistance.

$$I_L = I_C = \beta I_{BE} = \beta \frac{V_{CTRL} - 6V}{R_{SET}}$$

This is actually a sample of bad design since the current through the load depends on β.

Notes
Constant current source

Current through the load resistor does not depend on the load resistance.

\[I_L = I_C = \beta I_{be} = \beta \frac{V_{ctrl} - 6V}{R_{set}} \]

This is actually a sample of bad design since the current through the load depends on \(\beta \).

\[V_C = V_{cc} - R_L I_L \]

Remember that \(V_C \) must be \(> V_b \) thus current cannot be bigger than the saturation current

\[I_{sat} = \max(I_L) \leq \frac{V_{cc} - V_b}{R_L} \approx \frac{V_{cc}}{R_L} \]

From \(V_{cc} \) point of view, left schematic is equivalent to the right one:

\[R_{trans} = \frac{V_C}{I_L} = \frac{V_{cc} - R_L I_L}{I_L} \]

Transistor

\textbf{Trans(sform)-(r)esistor}

Constant current source. Power dissipation.

Transistor power dissipation

\[P_{trans} = P_{be} + P_{ce} = V_{be} I_{be} + V_{ce} I_{ce} \]

Since

\[V_{ce} \leq V_{ce}, I_{be} = \frac{I_{ce}}{\beta} \ll I_{ce}, \text{ and } I_{ce} = I_L \]

\[P_{trans} = V_{ce} I_{ce} = R_{trans} I_L^2 \]
Constant current source. Power dissipation.

Transistor power dissipation

\[P_{\text{trans}} = P_{\text{be}} + P_{\text{ce}} = V_{\text{be}}I_{\text{be}} + V_{\text{ce}}I_{\text{ce}} \]

Since

\[V_{\text{be}} \leq V_{\text{ce}}, \quad I_{\text{be}} = I_{\text{ce}}/\beta, \quad \text{and} \quad I_{\text{be}} = I_L \]

\[P_{\text{trans}} = V_{\text{be}}I_{\text{be}} = R_{\text{trans}}I_L^2 \]

Maximum power dissipation in transistor is when \(R_{\text{trans}} = R_L \).

Maximum power dissipation in transistor is when \(R_{\text{trans}} = R_L \max \)

\[(P_{\text{trans}}) = \frac{V_{\text{cc}}^2}{4R_L}, \quad \text{when} \quad I_L = \frac{V_{\text{cc}}}{2R_L} \]

Voltage controlled switch

When properly designed outcome does not depend on reasonable variations of \(\beta \).

Recall that typically \(\beta = 100 \ldots 200 \)

We will assume the worst case scenario \(\beta = 10 \)

Notice that \(R_L \) limits collector current \(I_L \)

\[I_L = \frac{V_{\text{cc}}}{R_L} \]

\[I_{\text{be}} = \frac{V_{\text{cc}} - 6\text{V}}{R_B} = \frac{I_L}{\beta} \]

\[R_B \leq \frac{V_{\text{cc}} - 6\text{V}}{\beta R_L} \]
We achieved the input impedance increase.

\[R_{\text{input}} = \frac{V_{\text{in}}}{I_{\text{be}}} \approx R_L (\beta + 1) \]

As result our \(V_{\text{in}} \) source is not overloaded and our load receive all required current (as long as the collector power supply can support it).