Transistors.

Notes

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06

Eugeniy Mikhallov (W&M)

Electronics 1

Lecture 06 1/12

Transistors

- invented in 1947
- amplify current
- lower power consumption
- cheap for mass production
- robust to vibration
- long working time (decades) when properly used
- replaced vacuum tube
- building block of modern electronics

Some areas where vacuum tube are still good

- ultra high voltage applications (more then 1000 V)
- radiation prone locations

- Base-emitter current (Ibe)
- ullet Collector-emitter current (I_{ce})
- Base-emitter voltage difference $(V_{be} = V_b V_e)$
- Collector-emitter voltage difference $(V_{ce} = V_c V_e)$

Notes
Notes
Notes
Voice
Notes
Notes

Simple NPN-transistor rules

To support shown currents direction

Notes

Eugeniy Mikhailov (W&M) Electronics 1

4 D > 4 B > 4 E > 4 E > E 9 Q C

Simple NPN-transistor rules

To support shown currents direction

• $V_{ce} > 0$

Eugeniy Mikhailov(W&M) Electronics 1 Lecture 06 5 / 1

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- V_{be} > 0
 - ullet since, it is forward biased diode $\emph{V}_{\emph{be}} \approx 0.6~\mbox{V}$

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- *V_{be}* > 0
 - $\bullet~$ since, it is forward biased diode $\textit{V}_\textit{be} \approx \text{0.6 V}$
- V_{cb} >
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if V_{cb} < 0 transistor goes to saturation and cannot be described by the following simple rule.

4	ŀ	4 🗇	ŀ	\triangleleft	3	Þ	\triangleleft	3	Þ	2	20

iy Mikhailov (W&M) Elec

cture 06 5 / 12

-			

Notes

Notes

Notes

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- V_{be} > 0
 - since, it is forward biased diode $V_{be} \approx 0.6 \text{ V}$
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple

If above holds true then

			200
Eugeniy Mikhailov (W&M)	Electronics 1	Lecture 06	5 / 12
Simple NPN-transis	stor rules		

To support shown currents direction

- *V_{ce}* > 0
- $V_{be} > 0$
 - $\bullet\,$ since, it is forward biased diode $\textit{V}_\textit{be}\approx \text{0.6 V}$
- - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple rule

• $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- *V_{be}* > 0
 - ullet since, it is forward biased diode $V_{be} pprox 0.6 \ V$
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - ullet if $V_{cb} < 0$ transistor goes to saturation and cannot be described by the following simple

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes $h_{\rm fe}$) pprox 100 . . . 200

Simple NPN-transistor rules

To support shown currents direction

- *V_{ce}* > 0
- $V_{be} > 0$
 - ullet since, it is forward biased diode $V_{be} \approx 0.6 \ V$
- $V_{cb} > 0$
 - since, it is reversed biased diode, no current goes from collector to base, all collector current is directed to emitter
 - if V_{cb} < 0 transistor goes to saturation and cannot be described by the following simple rule.

- $I_{ce} = \beta I_{be}$ thus a BJT is a current amplifier
- the static forward current transfer ratio β (or sometimes $h_{\rm fe}$) \approx 100 . . . 200
- I_e =

В	₹
	Е

Mikhailov (W&M)	Electronics 1	Lecture 06	5/1
$I_{be} + I_{ce} = (\beta)$	$+$ 1) $I_{be} \approx \beta I_{be}$	< c > < d > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 >	99

Notes			
Notes			
10162			
Notes			
Notes			

Simple PNP-transistor rules

Apply the same rules as before for NPN BJT but multiply currents and voltages by -1. Hints

- the arrow indicates the direction in which current is supposed to flow.
- the arrow always connects the base and emitter.

Notes

Notes

v (W&M) Electronics 1

Design considerations for β

Remember β is not a constant!

It depends on many parameters

- temperature
- collector current
- varies from device to device even in the same batch

Good design should not depend on β value.

Constant current source

Current through the load resistor does not depend on the load resistance.

$$I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6 V}{R_{set}}$$

くロト(か)(き)(き) き) と うへ Eugenly Mikhailov(W&M) Electronics 1 Lecture 06 8 / 12

Constant current source

Current through the load resistor does not depend on the load resistance.

$$I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6 V}{R_{set}}$$

This is actually a sample of bad design since the current through the load depends on β .

Lecture 06 8

_	-	-	-	-

Notes

Notes

Constant current source

Current through the load resistor does not depend on the load resistance.

$$I_L = I_c = \beta I_{be} = \beta \frac{V_{ctrl} - .6 V}{R_{set}}$$

This is actually a sample of bad design since the current through the load depends on β .

$$V_c = V_{cc} - R_L I_L$$

Notes

Notes

Notes

Constant current source

Current through the load resistor does not depend on the load resistance.

$$I_L = I_C = \beta I_{be} = \beta \frac{V_{\it Ctrl} - .6 \, V}{R_{\it Set}}$$

This is actually a sample of bad design since the current through the load depends on β .

$$V_c = V_{cc} - R_L I_L$$

remember that V_c must be $> V_b$ thus current cannot be bigger then the saturation current

$$I_{sat} = max(I_L) \leq rac{V_{cc} - V_b}{R_L} pprox rac{V_{cc}}{R_L}$$

From V_{cc} point of view, left schematic is

Constant current source (continued)

Tran(sform)-(re)sistor

Constant current source. Power dis

Transistor power dissipation

ition.	Notes
re I _{ce}	
$_{\mathrm{Ce}}=I_{\mathrm{L}}$ $rac{\mathrm{V}_{\mathrm{cc}}}{\mathop{\geqslant}^{\mathrm{R}_{\mathrm{L}}}}$	
(A) C R _{trans}	
I	
÷	
4B> 4 E> 4 E>	

Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

Since
$$V_{be} \leq V_{ce}$$
, $I_{be} = I_{ce}/\beta \ll I_{ce}$, and $I_{ce} = I_L$ $P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_L^2$ Maximum power dissipation in transistor

$$P_{trans} \approx V_{colleg} = R_{trans}l_{i}^{2}$$

Notes

Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{ho} + P_{co} = V_{ho}I_{ho} + V_{co}I_{co}$$

Since
$$V_{t+1} \leq V_{t+1} = I_{t+1}/\beta \ll I_{t+1}$$
 an

$$P_{trans} \approx V_{co} I_{co} = R_{trans} I_{co}^2$$

Since $V_{be} \leq V_{ce}$, $I_{be} = I_{ce}/\beta \ll I_{ce}$, and $I_{ce} = I_L$ $P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_L^2$ Maximum power dissipation in transistor

Constant current source. Power dissipation.

Transistor power dissipation

$$P_{trans} = P_{be} + P_{ce} = V_{be}I_{be} + V_{ce}I_{ce}$$

$$P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_L^2$$

Since $V_{be} \leq V_{ce}$, $I_{be} = I_{ce}/\beta \ll I_{ce}$, and $I_{ce} = I_L$ $P_{trans} \approx V_{ce}I_{ce} = R_{trans}I_L^2$ Maximum power dissipation in transistor is when R

$$max(P_{trans}) = \frac{V_{cc}^2}{4R_l}$$
, when $I_L = \frac{V_{cc}}{2R_l}$

Voltage controlled switch

When properly designed outcome does not depend on reasonable variations of β

Recall that typically $\beta = 100 \dots 200$ We will assume the worst case scenario $\beta = 10$ Notice that R_L limits collector current

$$I_{L} = \frac{V_{cc}}{R_{L}}$$

$$I_{be} = \frac{V_{ctrl} - .6V}{R_{b}} = \frac{I_{L}}{\beta}$$

$$R_{b} \le \frac{V_{ctrl} - .6V}{V_{ctrl} - .6V} \beta R_{L}$$

niy Mikhailov	(M&W)	Electro

Notes

Notes

Notes

Emitter follower

$$V_{out} = V_{in} - 0.6V$$

40 > 40 > 42 > 42 > 2 990

Electronics I

Emitter follower

$$V_{out} = V_{in} - 0.6V$$

Gain. What gain?

Emitter follower

$$V_{out} = V_{in} - 0.6 V$$

Gain. What gain?

We achieved the input impedance increase.

$$R_{input} = rac{V_{in}}{I_{be}} pprox R_L(eta+1)$$

As result our V_{in} source is not overloaded and our load receive all required current (as long as the collector power supply can support it).

		(D) (B) (E) (E) E	990
Eugeniy Mikhailov (W&M)	Electronics 1	Lecture 06	12 / 12

Notes	
	_
	_
Notes	
	_
	_
	_
Notes	
	_
Notes	
	_
	_
	_