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DFT filters (repeat)

Once you get a signal you can filter unwanted components out of it.
The recipe is the following

@ sample the signal
@ calculate forward FT (fft)

@ have a look at the spectrum and decide which components are
unwanted

@ apply filter which attenuate unwanted frequency component
(remember that if you attenuate the component of the frequency f
by g7 you need to attenuate the component at —f by g;.

@ calculate inverse FT (ifft) of the filtered spectrum
@ repeat if needed

Vitered(t) = F " [F(y(t))G(N)] = F " [Y(F)G(f)]
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Speed of FFT

@ The main work horse of the DFT filters is FFT algorithm
@ it is handy to know its performance behavior
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Brick wall low-pass filter
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Vitered(t) = F " [F(y(t))G(F)] = F " [Y(F)G(f)]

freg=fourier_frequencies (SampleRate, N);

G=ones (N,1); G( abs(freq) > Fcutoff, 1)=

y_filtered = ifft( fft(y ) . G )
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Brick wall low-pass filter (continued)
Signal vs time
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Brick wall high-pass filter
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Vitered(t) = F " [F(y(t))G(F)] = F " [Y(F)G(f)]

freg=fourier_frequencies (SampleRate, N);
G=ones (N,1); G( abs(freq) < Fcutoff, 1)=
y_filtered = ifft( fft(y ) . G )
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Brick wall high-pass filter (continued)
Signal vs time
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Brick wall band-pass filter

Signal vs time

4 Signal vs time
—filtered|
10
. . . |
P Filter gain function .
S 8
20 be 2
E _ Ibw 5
< 5 G(f) = 17Hf’ fC’§ PR
(f) = 0,||f| — fy| > fow
; NIfl— fo] > Y
% 20 40 60 80 100 E
Time (S) 0 20 4%me(se)o 80 100
Spectrum amplitudes Filter Bode plot Signal filtered spectrum
1
é ! —filtered|
4 505 o8l
3 i
-1 05 0 05 1
% 3 Frequency (Hz) Sos
5 =
2 21 Eoa4
n g =
1 § 9 0.2)
| ‘ | .l 05 0 05 1
9 -05 0 05 1 Frequency (Hz) -1 -05 0 05 1
Frequency (Hz) Frequency (Hz)

Vitered(t) = F " [F(y(t))G(F)] = F " [Y(F)G(f)]

freg=fourier_frequencies (SampleRate, N);
G=ones (N, 1); G( abs (abs(freq)-Fcenter) > BW/2, 1)=0;
y_filtered = ifft( fft(y ) . G )
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Brick wall band-pass filter (continued)
Signal vs time
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Brick wall band-stop filter
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Vitered(t) = F " [F(y(t))G(F)] = F " [Y(F)G(f)]

freg=fourier_frequencies (SampleRate, N);
G=zeros (N, 1); G( abs(abs(freq)-Fcenter) > BW/2, 1)=1;
y_filtered = ifft( fft(y ) . G )
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Brick wall band-stop filter (continued)

15

10}

Signal vs time

—raw

—filtered||

0 20 40 60 80

Time (S)

Eugeniy Mikhailov (W&M) Practical Computing

100

Lecture 26

11/15



Brick wall filters artifacts

Sharp features in Fourier spectrum produce ring-down like signals
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Low pass smoothed

Sharp features in Fourier spectrum produce ring-down like signals
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Windowing artifacts

Similarly sharp features in time lead to broadening of the spectrum

Signal vs time

5]

Amplitude
°

|
&

"o

20 40 60
Time (S)

Signal vs time

80

100

=) I

Amplitude

!
&

0

20 60

40
Time (S)

80

100

Implicitly assumed
Rectangular window

Wn — 1
Ywindowed, = YnWn
Hann window
1 _
W, = E(1 _COS(ZWN—1

@ Note: spectral resolution ~ 1/ Tyindow-
Search for other windowing functions: Hamming, Tukey, Cosine,
Lanczos, Triangulars, Gaussians, Bartlett-Hann, Blackmans, Kaisers.
They all drop a signal at the beginning and at the end to zero.
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Other DFT applications

Fun one: two dimensional high and low pass image filter with merge

Depending on distance to the image you should see either meor Prof.
Novikova in the middle.

To see the second image either step aside or decrease zoom till you
do not see details on the right most image.

If you can take of your glasses the illusion is stronger.
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