Discrete Fourier Transform and filters

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 24

DFT vs Matlab FFT

DFT

$$
\begin{aligned}
y_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} c_{n} \exp \left(i \frac{2 \pi(k-1) n}{N}\right) \text { inverse Fourier transform } \\
c_{n} & =\sum_{k=1}^{N} y_{k} \exp \left(-i \frac{2 \pi(k-1) n}{N}\right) \text { Fourier transform } \\
n & =0,1,2, \cdots, N-1
\end{aligned}
$$

Matlab FFT

$$
\begin{aligned}
y_{k} & =\frac{1}{N} \sum_{n=1}^{N} c_{n} \exp \left(i \frac{2 \pi(k-1)(n-1)}{N}\right) \text { inverse Fourier transform } \\
c_{n} & =\sum_{k=1}^{N} y_{k} \exp \left(-i \frac{2 \pi(k-1)(n-1)}{N}\right) \text { Fourier transform } \\
n & =1,2, \cdots, N
\end{aligned}
$$

So do DFT \rightarrow Matlab FFT is equivalent of $n \rightarrow n+1$ and vice versa

Warning about notation

Since c_{0} has a special meaning of a DC component of the signal. I will always use the DFT notation unless mentioned otherwise. People often denote the forward Fourier transform as \mathcal{F} so

$$
Y=\mathcal{F} y
$$

So Y is the spectrum of the signal y Inverse Fourier transform is denoted as \mathcal{F}^{-1}

$$
y=\mathcal{F}^{-1} Y
$$

Instead of using c_{n} coefficient we refer in this notation to Y_{n}

Sampling rate and important physics relationship

Since for DFT we need to have equidistant points and signal repeats itself. We consider signals which start at time 0 and take N points. To deduce the time of the data point we just multiply it's index by the time spacing Δt.
Time series

Spectrum

Sampling rate is defined as $f_{s}=1 / \Delta t=f_{1} N$ and period $T=N \Delta t$.
y_{i} is taken at time $t_{i}=i \Delta t=i / f_{s}, y_{i+N}=y_{i}$.
$Y_{i+N}=Y_{i}$.
In matlab fft Y_{n} has the frequency $f_{n}=f_{1}(n-1)=f_{s}(n-1) / N$.

Nyquist frequency

Provided that we have N data point taken with sampling rate f_{s} what is the maximum frequency which we can expect to see in our spectrum? Naively, we can say $(N-1) * f_{1} \approx f_{s}$ since in spectrum all points are separated by fundamental frequency $f_{1}=1 / T=f_{s} / N$ However recall that $Y_{N-n}=Y_{-n}$ i.e the higher half of the vector Y contains negative frequency. So at max we can hope to obtain spectrum with the highest frequency smaller than

Nyquist frequency

$$
F_{N q}=f_{1} \frac{N}{2}=\frac{f_{s}}{2}
$$

Nyquist criteria

$$
f_{s}>2 f_{\text {signal }}
$$

You must sample your signal faster than twice the highest frequency component of it. I.e. Nyquist frequency of you sample should be $>$ than the highest signal frequency.

Aliasing: wrong/slow sampling frequency

Sampling with

$f_{s}=2 f_{\text {signal }}$
i.e.
$f_{N q}=f_{\text {signal }}$ Sampled signal appeared to be DC

Aliasing: too slow sampling frequency - reflection

Under sampling
$f_{s}=1.1 f_{\text {signal }}$
Sampled signal seems to be lower frequency.

This is case of reflection/folding when frequency higher than the Nyquist frequency appears to be negative and slower one.

$$
f_{\text {signal }} \rightarrow\left(f_{\text {signal }}-2 f_{N q}\right)
$$

Aliasing: too slow sampling frequency - ghosts

Under sampling
$f_{s}=1.93 f_{\text {signal }}$
Sampled signal seems to be very different

This is also a case of reflection/folding when frequency higher than the Nyquist frequency appears to be negative and slower one.

DFT filters

Once you get a signal you can filter unwanted components out of it. The recipe is the following

- sample the signal
- calculate FT (fft)
- have a look at the spectrum and decide which components are unwanted
- apply filter which attenuate unwanted frequency component (remember that if you attenuate the component of the frequency f by g_{f} you need to attenuate the component at $-f$ by g_{f}^{*}.
- calculate inverse FT (ifft) of the filtered spectrum
- repeat if needed

Applications

- Noise reduction
- Compression

