Notes

Discrete Fourier Transform and filters

Eugeniy E. Mikhailov

Lecture 24

Looturo 24

Lecture 24

Lecture 24

Eugeniy Mikhailov (W&M) Practical Computing DFT vs Matlab FFT

DFT

$$y_{k} = \frac{1}{N} \sum_{n=0}^{N-1} c_{n} \exp(i\frac{2\pi(k-1)n}{N}) \text{ inverse Fourier transform}$$

$$c_{n} = \sum_{k=1}^{N} y_{k} \exp(-i\frac{2\pi(k-1)n}{N}) \text{ Fourier transform}$$

$$n = 0, 1, 2, \dots, N-1$$

Matlab FFT

$$y_k = \frac{1}{N} \sum_{n=1}^{N} c_n \exp(i\frac{2\pi(k-1)(n-1)}{N}) \text{ inverse Fourier transform}$$

$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)(n-1)}{N}) \text{ Fourier transform}$$

$$n = 1, 2, \cdots, N$$

So do DFT \rightarrow Matlab FFT is equivalent of $n \rightarrow n + 1$ and vice versa $n \rightarrow n + 1$ Practical Computing

Warning about notation

Eugeniy Mikhailov (W&M)

Since c_0 has a special meaning of a DC component of the signal. I will always use the DFT notation unless mentioned otherwise. People often denote the forward Fourier transform as $\ensuremath{\mathcal{F}}$ so

$$Y = \mathcal{F}y$$

So *Y* is the spectrum of the signal *y* Inverse Fourier transform is denoted as \mathcal{F}^{-1}

 $y = \mathcal{F}^{-1} Y$

Instead of using c_n coefficient we refer in this notation to Y_n

Sampling rate and important physics relationship

Since for DFT we need to have equidistant points and signal repeats itself. We consider signals which start at time 0 and take N points. To deduce the time of the data point we just multiply it's index by the time spacing Δt .

Practical Computing

Time series

Eugeniv Mikhailov (W&M)

Spectrum

Sampling rate is defined as $f_s = 1/\Delta t = f_1 N$ and period $T = N\Delta t$. y_i is taken at time $t_i = i\Delta t = i/f_s$, $y_{i+N} = y_i$. $Y_{i+N} = Y_i$

In matlab fft Y_n has the frequency $f_n = f_1(n-1) = f_s(n-1)/N$.

Notes

Notes

Notes

Nyquist frequency

Provided that we have N data point taken with sampling rate f_s what is the maximum frequency which we can expect to see in our spectrum? Naively, we can say $(N-1) * f_1 \approx f_s$ since in spectrum all points are separated by fundamental frequency $f_1 = 1/T = f_s/N$ However recall that $Y_{N-n} = Y_{-n}$ i.e the higher half of the vector Y contains negative frequency. So at max we can hope to obtain spectrum with the highest frequency smaller than

Nyquist frequency

 $F_{Nq} = f_1 \frac{N}{2} = \frac{f_s}{2}$

Eugeniy Mikhailov (W&M) Nyquist criteria

Notes

$f_s > 2 f_{signal}$

You must sample your signal faster than twice the highest frequency component of it. I.e. Nyquist frequency of you sample should be > than the highest signal frequency.

Practical Computing

Aliasing: wrong/slow sampling frequency

Sampling with $f_s = 2 f_{signal}$ i.e. $f_{Nq} = f_{signal}$ Sampled signal appeared to be DC

Eugeniv Mikhailov (W&M)

Lecture 24

Aliasing: too slow sampling frequency - reflection

Practical Computin

Under sampling $f_s = 1.1 f_{signal}$ Sampled signal seems to be lower frequency.

Eugeniy Mikhailov (W&M)

ugeniv Mikhailov (W&M)

ø

Lecture 24

This is case of reflection/folding when frequency higher than the Nyquist frequency appears to be negative and slower one. $f_{signal}
ightarrow (f_{signal} - 2f_{Nq})$

Practical Cor

Notes

Notes

Notes

Aliasing: too slow sampling frequency - ghosts

This is also a case of reflection/folding when frequency higher than the Nyquist frequency appears to be negative and slower one.

Practical Computing

< **Ø**⇒

Lecture 24

9/10

DFT filters

Eugeniy Mikhailov (W&M)

Once you get a signal you can filter unwanted components out of it. The recipe is the following

- sample the signal
- calculate FT (fft)
- have a look at the spectrum and decide which components are unwanted
- apply filter which attenuate unwanted frequency component (remember that if you attenuate the component of the frequency f by g_f you need to attenuate the component at -f by g^{*}_f.

Practical Computing

- calculate inverse FT (ifft) of the filtered spectrum
- repeat if needed

Applications

- Noise reduction
- Compression

 Eugeniy Mikhailov (W&M)

(注)→ (注)→ 注 - のへ(?) Lecture 24 10 / 10 Notes

Notes

Notes

Notes