Notes

System of linear algebraic equations

Eugeniy E. Mikhailov The College of William & Mary

Lecture 21

Eugeniy Mikhailov (W&M) Practical Computing
Mobile problem

Suppose someone provided us with 6 weights and 3 rods. We need to calculate the positions of suspension points.

If system in equilibrium torque must be zero at any pivot point

 $w_{1}x_{1} - (w_{2} + w_{3} + w_{4} + w_{5} + w_{6})x_{2} = 0$ $w_{3}x_{3} - (w_{4} + w_{5} + w_{6})x_{4} = 0$ $w_{5}x_{5} - w_{6}x_{6} = 0$ w_{1}

We need 3 more equation. Let's fix length of the rods

 $\begin{array}{rcl} x_1 + x_2 & = & L_{12} \\ x_3 + x_4 & = & L_{34} \\ x_5 + x_6 & = & L_{56} \end{array}$

Mobile problem continued

Mikhailov (W&M)

Let's define $w_{26} = w_2 + w_3 + w_4 + w_5 + w_6$ and $w_{46} = w_4 + w_5 + w_6$

actical Computing

 $w_1 x_1 - w_{26} x_2 = 0$ $\sum A_{ij} x_j = B_i o \mathbf{A} \mathbf{x} = \mathbf{B}$ $w_3 x_3 - w_{46} x_4 = 0$ $w_5 x_5 - w_6 x_6 = 0$ $x_1 + x_2 = L_{12}$ Matlab has a lot of built in $x_3 + x_4 =$ L_{34} functions to solve problem of this form $x_5 + x_6 =$ L_{56} 0 0 0 0 W1 -*W*₂₆ 0 Х1 0 0 0 0 0 W3 $-W_{46}$ *x*₂ *x*3 0 0 0 0 0 **W**5 $-W_6$ _ 0 0 0 0 L_{12} 1 1 *x*₄ 0 0 1 1 0 0 *x*5 L_{34} 0 0 0 0 1 1 L₅₆ Xe

Inverse matrix method

niv Mikhailov (W&M)

 $\mathbf{A}\mathbf{x} = \mathbf{B}$

Practical Computing

 $\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{-1}\boldsymbol{B},\ \text{det}\left(\boldsymbol{A}\right)\neq\boldsymbol{0}$

Analytical solution						
	$\mathbf{x} = \mathbf{A}^{-1}\mathbf{B}$					
Matlab first way (not the fastest)						
	$\mathbf{x} = \operatorname{inv}(\mathbf{A}) * \mathbf{B}$					
Matlab second way (recommended)						
$\mathbf{x} = \mathbf{A} ackslash \mathbf{B}$						
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 21 4 / 7				

Notes

Looturo 01

W₆

Lecture 21

Lecture 21

Notes

Notes

If $w_1 = 20$, $w_2 = 5$, $w_3 = 3$, $w_4 = 7$, $w_5 = 2$, $w_6 = 3$, $L_{12} = 2$, $L_{34} = 1$, and $L_{56} = 3$, then $w_{26} = 20$ and $w_{46} = 12$.

/20	-20	0	0	0	0 \	$\langle x_1 \rangle$		/0\
0	0	3	-12	0	0	x ₂		0
0	0	0	0	2	-3	<i>x</i> ₃		0
1	1	0	0	0	0	<i>x</i> ₄	=	2
0	0	1	1	0	0	<i>x</i> 5		1
0/	0	0	0	1	1/	$\langle x_6 \rangle$		\ 3/

		$(\Box) \to (\Box) \to (\Xi) \to (\Xi) \to (\Xi) \to (O)$					
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 21 5 / 7					
Matlab mobile solution							
$A = [\dots \\ 20, -20, 0, 0, 0, \\ 0, 0, 3, -12.$	0, 0; 0, 0;	x = 1.0000 1.0000					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2, -3; 0, 0; 0, 0; 1, 1:	0.8000 0.2000 1.8000 1.2000					
] B= [0; 0; 0; 2;	1; 3]	Check					
% 1st method	>> A*x-B						
x=inv(A)*B % 2nd method x=A\B	1.0e-15 * 0 0						
		0 0 2220					

Practical Computing

When do and when not to do inverse matrix

Solutions based on Inverse matrix calculations involve extra (unnecessary for solution) steps and thus are slower

>> A=rand(4000); >> B=rand(4000,1); >> tic; x=inv(A)*B; toc Elapsed time is 54.831124 seconds. >> tic; x=A\B; toc

Eugeniv Mikhailov (W&M)

Elapsed time is 19.822778 seconds.

However it is handy to calculate inverse matrix in advance if you solve Ax = B for different B with the same A.

```
>> tic; Ainv=inv(A); toc
Elapsed time is 58.304244 seconds.
>> B1=rand(4000,1); tic; x1=Ainv*B1; toc
Elapsed time is 0.048547 seconds.
>> B2=rand(4000,1); tic; x2=Ainv*B2; toc
Elapsed time is 0.048315 seconds.
Eugeny/Mkhalov (V&M) Practeal Computing
```

Notes

Notes

Notes

0

Lecture 21

Lecture 21 7 / 7

Notes