Ordinary Differential equations continued

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 20

Recall Euler's method

$$
\vec{y}^{\prime}=\vec{f}(x, \vec{y})
$$

There is an exact way to write the solution

$$
\vec{y}(x)=\int_{x_{0}}^{x} \vec{f}(x, \vec{y}) d x
$$

However for small interval of $x, x+h$ we assume that $\vec{f}(x, \vec{y})$ is constant

$$
\vec{y}\left(x_{i+1}\right)=\vec{y}\left(x_{i}+h\right)=\vec{y}\left(x_{i}\right)+\vec{f}\left(x_{i}, \vec{y}_{i}\right) h+\mathcal{O}(h)
$$

The second-order Runge-Kutta method

Using multi-variable calculus and Taylor expansion, it can be shown
$\vec{y}\left(x_{i+1}\right)=\vec{y}\left(x_{i}+h\right)=$

$$
=\vec{y}\left(x_{i}\right)+C_{0} \vec{f}\left(x_{i}, \vec{y}_{i}\right) h+C_{1} \vec{f}\left(x_{i}+p h, \vec{y}_{i}+q h \vec{f}\left(x_{i}, \vec{y}_{i}\right)\right) h+\mathcal{O}\left(h^{3}\right)
$$

When

$$
C_{0}+C_{1}=1, \quad C_{1} p=1 / 2, \quad C_{1} q=1 / 2
$$

There is a lot of possible choices of parameters C_{0}, C_{1}, p, and q which has no advantage over the others.
One of popular choices is $C_{0}=0, C_{1}=1, p=1 / 2$, and $q=1 / 2$ for

Modified Euler's method or midpoint method (error $\mathcal{O}\left(h^{3}\right)$)

$$
\begin{aligned}
k_{1} & =h \vec{f}\left(x_{i}, \vec{y}_{i}\right) \\
k_{2} & =h \vec{f}\left(x_{i}+\frac{h}{2}, \vec{y}_{i}+\frac{1}{2} k_{1}\right) \\
\vec{y}\left(x_{i}+h\right) & =\vec{y}_{i}+k_{2}
\end{aligned}
$$

The forth-order Runge-Kutta method

truncation error $\mathcal{O}\left(h^{5}\right)$

$$
\begin{aligned}
k_{1} & =h \vec{f}\left(x_{i}, \vec{y}_{i}\right) \\
k_{2} & =h \vec{f}\left(x_{i}+\frac{h}{2}, \vec{y}_{i}+\frac{1}{2} k_{1}\right) \\
k_{3} & =h \vec{f}\left(x_{i}+\frac{h}{2}, \vec{y}_{i}+\frac{1}{2} k_{2}\right) \\
k_{4} & =h \vec{f}\left(x_{i}+h, \vec{y}_{i}+k_{3}\right) \\
\vec{y}\left(x_{i}+h\right) & =\vec{y}_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Have a look in help files for ODEs in particular

- ode45-adaptive explicit 4th order Runge-Kutta method (good default method)
- ode23 - adaptive explicit 2nd order Runge-Kutta method
- ode113 - "stiff" problem solver
- and others

Adaptive stands for no need to chose ' h ', algorithm will do it by itself. But do remember the rule of not trusting computers.
Also run odeexamples to see some of the demos for ODEs solvers

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

