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@ Typical modern experiment generates Mega bytes or even Terra

bytes of data.

@ there is no way for a human to comprehend such enormous

amount of data
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Data reduction

@ Typical modern experiment generates Mega bytes or even Terra

bytes of data.

@ there is no way for a human to comprehend such enormous

amount of data

@ we need to post-process it and extract some important parameters
e alternatively we want to check how our models reflect reality

Ay
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Someone measured bunch of experimental points y as a function of
independent variable x. We want to extract model parameters g via

fitting of the model function f(x, B).

Remark: in general x and y could be vectors i.e. multi-dimensional, for
example X has 2 coordinates: speed of the car and the weight of the
load, and y would have the fuel consumption and the engine

temperature.

For simplicity we will focus on the one dimensional case for x and y

@ we are given experimental points x; — y;
@ our model function f(x;, B): X; —
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Goodness of the fit

. . Notes
First we need to define some way to
estimate goodness of the fit. y
Very common is to use the sum of the
squares of the fit deviations from the
experiment data points.
=Y (i—y)
i
Differences of (y; — y;) are called residuals
For a given sets {x;}, {y;} and f the goodness of the fit x?> depends
only on parameters p of the model/fit function
Our job is simple: find optimal g which minimizes x? using any suitable
algorithm. l.e. Perform so called the least square fit.
Good fit should have the following properties
Notes
@ residuals should be randomly scattered around 0
e i.e. no visible trends of residuals vs x
@ standard deviation or RMS residual = d‘N va(y; — ¥1)? should
be in order of the Ay (experimental uncertainty for y)
e the above condition is often overlooked but you should keep your
eyes on it.
e with enough fitting parameters you can make zero residuals fit but
this is unphysical since all your data has uncertainties if the
measurements
e beside such fits are usually useless since any new data point
usually leads to drastic modifications of the fit parameters.
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Estimation of uncertainty for parameters
Notes
@ Ap; could be estimated by change of the 2,
© AP X3(p1, P2, B3, - Pi+ Api,....) = 2x3(D1, P2, Ps, - - - Pis - - )
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Practical realization
Notes

Have a look at 'fitter.m’ where optimization of y? is done with
fminsearch matlab function.

See ‘fitter_usage_example.m’ for a particular usage example.
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Matlab built-ins

Notes

@ see fit from the Matlab curve fitting toolbox
@ more cumbersome to start using

e provides parameters uncertainties
@ see lsqgcurvefit from the Matlab optimization toolbox

They are faster since they take an assumption that merit function is
quadratic.
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