Multi-D optimization problem

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 14

Multi-D optimization

Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x})=0, h(\vec{x}) \leq 0$
\vec{x} design variables
$E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains
Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow-E(\vec{x})$.

Solution with Matlab built in Multi-D minimization fminsearch

$$
[x, f v a l]=\text { fminsearch (fun, x0) }
$$

fun hanldle to the multi-variable function
x0 initial 'guess' (vector)
x optimum position vector
fval value of the function at the optimum

fminsearch - usage example

Example

function ret=fsample_sinc(v) $\mathrm{x}=\mathrm{v}(1) ; \mathrm{y}=\mathrm{v}(2)$;
$r=s q r t\left(x^{\wedge} 2+y^{\wedge} 2\right)$; ret= -sin(r)/r;
end


```
x0vec=[0.5, 0.5];
[xResVec,zopt]=fminsearch(@fsample_sinc, x0vec)
    xResVec = [0.2852e-4, 0.1043e-4]
    zopt = -1.0000
```


It is easy to miss global minimum

Example

function ret=fsample_sinc(v)

$$
\begin{aligned}
& \mathrm{x}=\mathrm{v}(1) ; \quad \mathrm{y}=\mathrm{v}(2) ; \\
& \mathrm{r}=\operatorname{sqrt}\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right) ; \\
& \text { ret }=-\sin (r) / r ;
\end{aligned}
$$

end

Example

$x 0$ vec $=[5,5]$;
[xResVec, zopt]=fminsearch(@fsample_sinc, x0vec)
x ResVec $=[5.65605 .2621$]
zopt $=-0.1284$

Sample problem 1

Find the minimum of the function

$$
F(x, y, z)=2 x^{2}+2 y^{2}+z^{2}+2 x y+1-2 y+2 x z
$$

Sample problem 1

Find the minimum of the function

$$
F(x, y, z)=2 x^{2}+2 y^{2}+z^{2}+2 x y+1-2 y+2 x z
$$

$$
F(x, y, z)=(x+y)^{2}+(x+z)^{2}+(z-1)^{2}
$$

Minimum is $[x, y, z]=[-1,1,1]$

Sample problem 2: Potential well

Consider a 1D potential well with the following potential

$$
U(x)= \begin{cases}\infty & : \\ 0 & : \quad x<0 \\ U_{0} & : \quad x>L\end{cases}
$$

Wave function for this problem

$$
\Psi(x)= \begin{cases}0 & : x<0 \\ \sin (k x) & : x \leq L \\ B e^{-\alpha x} & : x>L\end{cases}
$$

Quantum Mechanics requires that $k=\frac{\sqrt{2 m\left(E-U_{0}\right)}}{\hbar}$ and $\alpha=\frac{\sqrt{2 m\left(U_{0}-E\right)}}{\hbar}$ We know that ψ function must be continuous and differentiable

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\Psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\Psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Suppose that we some how now k. What are the values for α and B ?

Sample problem 2: Potential well (cont)

Instead of solving system of linear equations

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\Psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\Psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Let's construct merit function

$$
M(\alpha, B)=\left(\Psi_{\text {in }}(L)-\Psi_{\text {out }}(L)\right)^{2}+\left(\Psi_{\text {in }}^{\prime}(L)-\Psi_{\text {out }}^{\prime}(L)\right)^{2}
$$

Sample problem 2: Potential well (cont)

Instead of solving system of linear equations

$$
\begin{aligned}
& \Psi_{\text {in }}(L)=\Psi_{\text {out }}(L) \\
& \Psi_{\text {in }}^{\prime}(L)=\Psi_{\text {out }}^{\prime}(L)
\end{aligned}
$$

Let's construct merit function

$$
M(\alpha, B)=\left(\Psi_{\text {in }}(L)-\Psi_{\text {out }}(L)\right)^{2}+\left(\Psi_{\text {in }}^{\prime}(L)-\Psi_{\text {out }}^{\prime}(L)\right)^{2}
$$

```
k=5.1416; L=1;
v0=fminsearch(...
    @merit_psi, [.11,1])
v0 = 2.3531 -9.5640
%
    alpha
    B
```


Sample problem 3: hanging weights

Consider masses m_{1} and m_{2} suspended by strings with length L_{1}, L_{2}, and L_{3}. Find the angles θ_{1}, θ_{2}, and θ_{3}.

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions

```
m1=2; m2=2;
L1=3; L2=2; L3=3;
Ltot=4; Htot=0;
```


Sample problem 3: hanging weights

Consider masses m_{1} and m_{2} suspended by strings with length L_{1}, L_{2}, and L_{3}. Find the angles θ_{1}, θ_{2}, and θ_{3}.

We need to minimize potential energy subject to the length constrains. See merit function in the file 'EconstrainedSuspendedWeights.m'

For the following initial conditions

```
m1=2; m2=2;
L1=3; L2=2; L3=3;
Ltot=4; Htot=0;
```

The answer should be close to $\theta_{1}=-1.231 ; \theta_{2}=0 ; \theta_{3}=1.231$;

```
theta = fminsearch( @EconstrainedSuspendedWeights,
    [-1,0,-1], optimset('TolX',1e-6))
theta = -1.2321 -0.0044 1.2311
```

