Optimization problem

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 13

Introduction to optimization

Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x})=0, h(\vec{x}) \leq 0$
\vec{x} design variables
$E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains
There is no guaranteed way (algorithm) which can find global minimum (optimal) point.
Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow-E(\vec{x})$.

Analytical solution of 1D

If we have 1D case and $E(x)$ has analytical derivative, optimization problem can be restated as

Find $f(x)=0$
where $f(x)=d E / d x$
since at maximum or minimum derivative must be zero.
Since we already know how to find the solution of $f(x)=0$ the rest is easy.

Example: max of black body radiation spectrum

According to Plank's law energy density per of black body radiation

$$
I(\lambda, T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{k K T}}-1}
$$

Intensity per wavelength vs wavelength

where
h is Planck constant $6.626 \times 10^{-34} \mathrm{~J} \times \mathrm{s}$,
c is speed of light $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$, k is Boltzmann constant $1.380 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$,
T is body temperature,
λ is wavelength

Solution with Matlab built in 1D minimization - fminbnd

```
function I_lambda=black_body_radiation(lambda,T)
% black body radiation spectrum
% lambda - wavelength of EM wave
% T - temperature of a black body
h=6.626e-34; % Plank constant
c=2.998e8; % speed of light
k=1.380e-23; % Boltzmann constant
I_lambda = 2*h*C^2 ./ (lambda.^5) ./ (exp (h*C./(lambda*k*T)) - 1);
end
```

First we flip/negate function since our algorithm is suited form min search and set particular T

T=5778;
$\mathrm{f}=$ @(x) - black_body_radiation (x,T) ;
Next, we find optimal solution
fminbnd($\mathrm{f}, 1 \mathrm{e}-9,2 \mathrm{e}-6$, optimset ('TolX', 1e-12)) ans $=5.0176 \mathrm{e}-07$
\% i.e. maximum radiation is at 502 nm

Then we plot it to find a bracket

Negated Intensity per wavelength vs wavelength

Golden section search algorithm

If you have an initial bracket for solution i.e. found a, b points such that there is a point x_{p} satisfying $a<x_{p}<b$ and $E\left(x_{p}\right)<\min (E(a), E(b))$.
Then $h=(b-a)$
(1) assign new probe points $x_{1}=a+R * h$ and $x_{2}=b-R * h$
(2) $E_{1}=E\left(x_{1}\right), E_{2}=E\left(x_{2}\right), E_{a}=E(a), E_{b}=E(b)$
(3) if $h<\varepsilon_{x}$ then stop otherwise do steps below
(9) note that for small enough h : $E\left(x_{1}\right)<E(a)$ and $E(x 2)<E(b)$
(0) shrink/update the bracket

- if $E_{1}<E_{2}$ then $b=x_{2}, E_{b}=E_{2}$ else $a=x_{1}, E_{a}=E_{1}$
(6) update $h=(b-a)$ and assign new probe points, with the proper
R we can reuse one of the old points either x_{1}, E_{1} or x_{2}, E_{2}
- if $E_{1}<E_{2}$

$$
\begin{aligned}
& \text { then } x_{2}=x_{1}, E_{2}=E_{1}, x_{1}=a+R * h, E_{1}=E\left(x_{1}\right) \\
& \text { else } x_{1}=x_{2}, E_{1}=E_{2}, x_{2}=b-R * h, E_{2}=E\left(x_{2}\right)
\end{aligned}
$$

(3) go to step 3
R given by the golden section $R=\frac{3-\sqrt{5}}{2} \approx 0.38197$

Derivation of the R value

at first step we have

$$
\begin{aligned}
& x_{1}=a+R * h \\
& x_{2}=b-R * h
\end{aligned}
$$

Suppose that $E\left(x_{1}\right)<E\left(x_{2}\right)$ then $a^{\prime}=a$ and $b^{\prime}=x_{2}$ then for the next bracket we evaluate x_{1}^{\prime} and x_{2}^{\prime}

$$
\begin{aligned}
x_{1}^{\prime} & =a^{\prime}+R * h^{\prime}=a^{\prime}+R *\left(b^{\prime}-a^{\prime}\right) \\
x_{2}^{\prime} & =b^{\prime}-R * h^{\prime}=b^{\prime}-R *\left(b^{\prime}-a^{\prime}\right) \\
& =x_{2}-R *\left(x_{2}-a\right)=b-R * h-R *(b-R * h-a)
\end{aligned}
$$

we would like to reuse on of the previous evaluations of E so we require that $x_{1}=x_{2}^{\prime}$. This leads to equation

$$
R^{2}-3 R+1=0 \text { with } R=\frac{3 \pm \sqrt{5}}{2}
$$

We need to choose minus sign since fraction $R<1$

