Optimization problem

Notes

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 13

Eugeniy Mikhailov (W8M)

Practical Computing

Lecture 13 1/7

Introduction to optimization

Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x}) = 0, h(\vec{x}) \le 0$

 \vec{x} design variables

 $E(\vec{x})$ merit or objective or fitness or energy function

 $g(\vec{x})$ and $h(\vec{x})$ constrains

There is no guaranteed way (algorithm) which can find global minimum (optimal) point.

Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \to -E(\vec{x})$.

Eugenly Mikhailov (W&M) Practical Computing Lecture 1

Analytical solution of 1D

If we have 1D case and $\boldsymbol{E}(\boldsymbol{x})$ has analytical derivative, optimization problem can be restated as

Find
$$f(x) = 0$$

where $f(x) = dE/dx$

since at maximum or minimum derivative must be zero. Since we already know how to find the solution of f(x)=0 the rest is easy.

Eugeniy Mikhailov (W&M)

Practical Computing

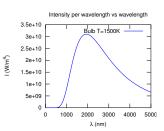
Lecture 13 3/7

Example: max of black body radiation spectrum

According to Plank's law energy density per of

$$I(\lambda, T) = \frac{2hc^2}{\sqrt{5}} \frac{1}{hc}$$

black body radiation



where

 $\textit{h} \,$ is Planck constant $6.626 \times 10^{-34} \; J \times s,$

c is speed of light 2.998 \times 10⁸ m/s,

 $\emph{k}~$ is Boltzmann constant 1.380 \times 10⁻²³ J K⁻¹,

T is body temperature,

 λ is wavelength

ng Lecture 13 4/

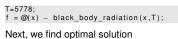
Notes		
Notes		
Notes		

Solution with Matlab built in 1D minimization - fminbnd

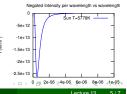
```
function I_lambda=black_body_radiation(lambda,T)
% black body radiation spectrum
% lambda — wavelength of EM wave
% T — temperature of a black body
h=6.6266-34; % Plank constant
c=2.998e8; % speed of light
k=1.380e-23; % Boltzmann constant
 I_{lambda} = 2*h*c^2 ./ (lambda.^5) ./ (exp(h*c./(lambda*k*T))-1);
```

First we flip/negate function since our algorithm is suited form min search and set particular T

Then we plot it to find a bracket



$$\begin{array}{ll} fminbnd(f,1e-9,2e-6,optimset('TolX',1e-12))\\ ans = 5.0176e-07\\ \% \ i.e. \ maximum \ radiation \ is \ at \ 502 \ nm \end{array}$$



Notas

Golden section search algorithm

If you have an initial bracket for solution i.e. found a, b points such that there is a point x_p satisfying $a < x_p < b$ and $E(x_p) < min(E(a), E(b))$. Then h = (b - a)

- **①** assign new probe points $x_1 = a + R * h$ and $x_2 = b R * h$
- ② $E_1 = E(x_1), E_2 = E(x_2), E_a = E(a), E_b = E(b)$
- $\ \, \textbf{ 0} \ \, \text{if } h<\varepsilon_{\it X} \text{ then stop otherwise do steps below} \\$
- note that for small enough h: $E(x_1) < E(a)$ and $E(x_2) < E(b)$
- shrink/update the bracket
- ullet if $E_1 < E_2$ then $b = x_2$, $E_b = E_2$ else $a = x_1$, $E_a = E_1$
- **1** update h = (b a) and assign new probe points, with the proper R we can reuse one of the old points either x_1 , E_1 or x_2 , E_2
 - $\bullet \ \ \text{if} \ E_1 < E_2$ then $x_2 = x_1$, $E_2 = E_1$, $x_1 = a + R * h$, $E_1 = E(x_1)$ else $x_1 = x_2$, $E_1 = E_2$, $x_2 = b - R * h$, $E_2 = E(x_2)$
- go to step 3

R given by the golden section $R = \frac{3-\sqrt{5}}{2} \approx 0.38197$

Eugeniy Mikhailov (W&M)

Derivation of the R value

at first step we have

$$x_1 = a + R * h$$

 $x_2 = b - R * h$

Suppose that $E(x_1) < E(x_2)$ then a' = a and $b' = x_2$ then for the next bracket we evaluate x_1' and x_2'

$$x'_1 = a' + R * h' = a' + R * (b' - a')$$

 $x'_2 = b' - R * h' = b' - R * (b' - a')$
 $= x_2 - R * (x_2 - a) = b - R * h - R * (b - R * h - a)$

we would like to reuse on of the previous evaluations of E so we require that $x_1 = x_2'$. This leads to equation

$$R^2 - 3R + 1 = 0$$
 with $R = \frac{3 \pm \sqrt{5}}{2}$

We need to choose minus sign since fraction $R \le 1_{col}$

Notes	
Notes	
Notes	