Random number generators and random processes

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 11

Eugeniy Mkrailov (Wam \quad Pracieal Compuring Statistics and probability intro
 Statistics and probability intro

Notes

Mathematical and physical definition of probability (p) of event ' x '

$$
p_{x}=\lim _{N_{\text {totat }} \rightarrow \infty} \frac{N_{x}}{N_{\text {total }}}
$$

where

N_{x} the number of registered event ' x '
$N_{\text {total }}$ the total number of all events

Eugeniy Mikhailov (Wem)
Peg board example

Peg board example
Notes

Peg board example

Peg board example
Notes

Peg board example
Example of 10^{4} balls runs over 40

ayers of nails
x=pegboard (10^4, 40);
hist(x, [-25:25]);

Resulting distribution is Gaussian

Probability for occurrence of the real number

It is well known that interval [$0 . .1$] has infinite amount of reals numbers (as well as any other non zero interval).
So there is very little or may be zero chance that event will repeat or even happen. Since we cannot run ∞ number of tests.
In this case we should speak about probability density $p(x)$.
The best way to estimate it is from a histogram.
Run you N tests with numbers distributed between 0 and 1. Split you interval at m bins and calculate number of events when you hit each bin $h\left(x_{b}\right)$. Plot this vs bin positions.
Easy to do with Matlab
$r=\operatorname{rand}(1, N) ;$ hist $(r, m) ;$
Then

$$
p(x)=\lim _{N, m \rightarrow \infty} \frac{h\left(x_{b} \text { nearest to } x\right)}{N}
$$

Eugeniy Mikhailov (wem)
Uniform random distribution Computing

$$
\begin{array}{ll}
r=\operatorname{rand}(1,10000) ; & r=\operatorname{rand}(1,10000) ; \\
\text { hist }(r, 10) ; & \text { hist }(r, 100) ;
\end{array}
$$

Random number generators

How can a computer, which is very accurate, precise, and deterministic, generate random numbers?

It cannot!

Instead we can generate a sequence of pseudo random numbers. By pseudo we mean that starting from the same initial conditions the computer will generate the same sequence of numbers (very handy for debugging). But otherwise it will look like random numbers and will have statistical properties of random numbers.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear Congruential Generator (LCG)

Recursive formula

$$
r_{i+1}=\left(a r_{i}+c\right) \bmod m
$$

here
m the modulus
a multiplier, $0<a<m$
c increment, $c \leq c<m$
r_{1} seed value, $0 \leq r_{1}<m$

All pseudo random generators have a period and this one is no exception. Note that once r_{i} repeat one of the previews values the sequence will restart.
This one can have at most a period of m distinct numbers (0..m).

Linear Congruential Generator (LCG) continued

Bad choice of a, c, m will lead to even shorter periods.

Example

$m=10, a=2, c=1, r_{1}=1$
$r=[1,3,7,5,1]$
While the LCG has advantage of speed and simplicity.
Do not use the LCG whenever your money or reputation are at stakes!
While Matlab does not use LCG, many other programming languages use it as default in their libraries so be aware of it.

Random number generators period

Even the best pseudo random generators cannot have a period larger than 2^{B}, where B is number of memory bits. Can you prove it?

While the period can be huge its not infinite. For example for Matlab $R 2007$ a the period is $2^{19937}-1$.

Why bother?
Recall that for example error of the Monte Carlo integration method is
$\sim 1 / \sqrt{N}$.
This holds true only when $N<$ than the period of random number generator (T).
Otherwise the MC method cannot give uncertainty better than
$\sim 1 / \sqrt{T}$. Further increase of the number of random points will not bring any any extra improvement.

How to check the random generator

Notes

Generally it is uneasy and probably impossible.
However for us only statistical properties are of importance.
So the easiest is to check that integral deviation calculated with Monte Carlo algorithm drops as $1 / \sqrt{N}$.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple LCG check
Let's see how the LCG will look
with very bad coefficient
$m=10, a=2, c=1, r_{1}=1$

function $r=$...
lcgrand (Nrows, Ncols, ...
a, c,m, seed)
r=zeros (Nrows, Ncols);
$r(1)=$ seed;
cntr=1;
for $i=2$:Nrows*Ncols; $r(i)=\bmod ((a * r(i-1)+c), m)$; end
$r=r /(m-1)$; \%normalization
Lines are fro MC with rand and end
line-crosses for
lcgrand(Nrows, Ncols, check_lcgrand
2,1,10);

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Notes

