Numerical integration continued

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 10

Midterm project

Problem (100 points total)You are working for NASA. Your team is responsible to design a rocket which should lift off and after travel time $T_t = 50$ seconds in the gravity field of the Earth must reach a certain orbit with the final verical velocity $v_f=0$. Do not worry about horizontal velocity, it is

another team responsibility. Engineers provided you with an engine capable to provide to the rocket a time dependent lift acceleration in the form of $a(t) = 100 * \exp(-(\tanh(b*t)*b*t/10)^2)$ (when other forces are disregarded) during time till a fuel line is cut off $T_c=10$ seconds. The acceleration grows with time since rocket burns fuel and becomes lighter. However at time T_c no fuel is left and thus no lift force provided.

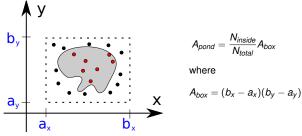
Assume that rocket starts from the planet Earth, treat the acceleration due to gravity as a constant $g=9.8~\mathrm{m/s^2}$ (i.e. neglect gravitational force change). Disregard the air drag. Task 1 (60 points): Your job is to find the proper value of coefficient b. Do not forget

Task 2 (40 points): Plot velocity of the rocket as a function of time once the proper value of b is found.

Bonus is harder but it is within a reach!

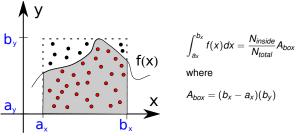
Bonus (10 points): Plot the altitude of the rocket as a function of time. What is the altitude of the rocket at time T_t ?

Toy example - area of the pond



- Points must be uniformly and randomly distributed across the
- The smaller the enclosing box the better it is.

Naive Monte Carlo integration

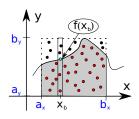


- Points must be uniformly and randomly distributed across the

The smaller the en	closing box the better	it is.	So	max((f(x))	\rightarrow	by
		< □		> → ∈	+ = +	2	9
eniy Mikhailov (W&M)	Practical Computing				Lectur	e 10	

Notes		
Notes		
Notes		
Notes		
Notes		
. 10100		

Monte Carlo integration derived



Notice that if we choose a small stripe around the bin value x_b , then subset of points in that stripe gives an estimate for $f(x_b)$.

Thus why bother spreading points around area?

Let's chose a uniform random distribution of points x_i inside

$$\int_{a_x}^{b_x} f(x) dx \approx \frac{b_x - a_x}{N} \sum_{i=1}^{N} f(x_i)$$

Notes

Error estimate for Monte-Carlo method

It can be shown that error of the numerical integration (E) is given by the following expressions

Monte Carlo method

$$E = \mathcal{O}\left((b_x - a_x)\sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}\right)$$

where

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

$$< f^2 > = \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$$

Error estimate for other methods

Rectangle method

$$E = \mathcal{O}\left(\frac{(b_x - a_x)h}{2}f'\right) = \mathcal{O}\left(\frac{(b_x - a_x)^2}{2N}f'\right)$$

Trapezoidal method

$$E = \mathcal{O}\left(\frac{(b_x - a_x)h^2}{12}f''\right) = \mathcal{O}\left(\frac{(b_x - a_x)^3}{12N^2}f''\right)$$

Simpson method

$$E = \mathcal{O}\left(\frac{(b_x - a_x)h^4}{180}f^{(4)}\right) = \mathcal{O}\left(\frac{(b_x - a_x)^5}{180N^4}f^{(4)}\right)$$

Notes		
Notes		
Notes		
Notes		
Notes		
Notes		