Numerical integration continued

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 10

Midterm project

Problem (100 points total)
You are working for NASA. Your team is responsible to design a rocket which should lift off and after travel time $T_{t}=50$ seconds in the gravity field of the Earth must reach a certain orbit with the final verical velocity $v_{f}=0$. Do not worry about horizontal velocity, it is another team responsibility.
Engineers provided you with an engine capable to provide to the rocket a time dependent lift acceleration in the form of $a(t)=100 * \exp \left(-(\tanh (b * t) * b * t / 10)^{2}\right)$ (when other forces are disregarded) during time till a fuel line is cut off $T_{c}=10$ seconds. The acceleration grows with time since rocket burns fuel and becomes lighter. However at time T_{c} no fuel is left and thus no lift force provided.
Assume that rocket starts from the planet Earth, treat the acceleration due to gravity as a constant $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (i.e. neglect gravitational force change). Disregard the air drag Task 1 (60 points): Your job is to find the proper value of coefficient b. Do not forget the units.
Task 2 (40 points): Plot velocity of the rocket as a function of time once the proper value of b is found.

Bonus is harder but it is within a reach!
Bonus (10 points): Plot the altitude of the rocket as a function of time. What is the altitude of the rocket at time T_{t} ?

Toy example - area of the pond

$$
A_{\text {pond }}=\frac{N_{\text {inside }}}{N_{\text {total }}} A_{\text {box }}
$$

where

$$
A_{b o x}=\left(b_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)
$$

- Points must be uniformly and randomly distributed across the area.
- The smaller the enclosing box the better it is.

Naive Monte Carlo integration

$\int_{a_{x}}^{b_{x}} f(x) d x=\frac{N_{\text {inside }}}{N_{\text {total }}} A_{\text {box }}$
where

$$
A_{b o x}=\left(b_{x}-a_{x}\right)\left(b_{y}\right)
$$

- Points must be uniformly and randomly distributed across the area.
- The smaller the enclosing box the better it is. So $\max (f(x)) \rightarrow b_{y}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notice that if we choose a small stripe around the bin value x_{b}, then subset of points in that stripe gives
 an estimate for $f\left(x_{b}\right)$.
Thus why bother spreading points around area?

$$
\begin{aligned}
& \text { Let's chose a uniform random } \\
& \text { distribution of points } x_{i} \text { inside } \\
& \text { [a } a_{x}, b_{x} \text {] } \\
& \int_{a_{x}}^{b_{x}} f(x) d x \approx \frac{b_{x}-a_{x}}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad

Error estimate for Monte-Carlo method

It can be shown that error of the numerical integration (E) is given by the following expressions

Monte Carlo method

$$
E=\mathcal{O}\left(\left(b_{x}-a_{x}\right) \sqrt{\frac{\left\langle f^{2}>-<f>^{2}\right.}{N}}\right)
$$

where

$$
\begin{aligned}
<f\rangle & =\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right) \\
<f^{2}> & =\frac{1}{N} \sum_{i=1}^{N} f^{2}\left(x_{i}\right)
\end{aligned}
$$

Trapezoidal method

$$
E=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right) h^{2}}{12} f^{\prime \prime}\right)=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right)^{3}}{12 N^{2}} f^{\prime \prime}\right)
$$

Simpson method

$$
E=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right) h^{4}}{180} f^{(4)}\right)=\mathcal{O}\left(\frac{\left(b_{x}-a_{x}\right)^{5}}{180 N^{4}} f^{(4)}\right)
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

