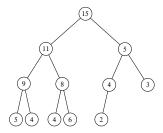
Sorting continued

Eugeniy E. Mikhailov


The College of William & Mary

Lecture 08

Heap

Heap is a structure where parent element is larger or equal to its children.

The top most element of the heap is called root.

Heap sorting method

- Fill the heap from the input vector elements
 - take the element and place it at the bottom of the heap
 - a sift-up (bubble up) this element
 - 3 do the same with the next element
- remove the root element since it is the largest
- rearrange the heap i.e. sift-down
 - take the last bottom element

 - place it at the rootcheck if parent is larger then children

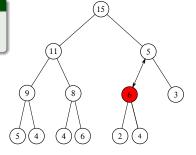
 - find the largest child element
 if the largest child is larger then parent swap them and repeat the
- repeat step 2 until no elements left in the heap

Heap sorting complexity $\mathcal{O}(N \log_2 N)$

(15) Place new element at the bottom of the heap

Notes		
-		
Notes		
Notes		
140103		
Notes		
_		
-		

Filling (sift-up) the heap

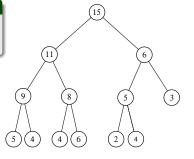

Step 2 Check if parent is larger then child. If so swap them and repeat step 2.

Filling (sift-up) the heap

Lecture 08 5/14

Step 2 Check if parent is larger

then child. If so swap them and repeat step 2.

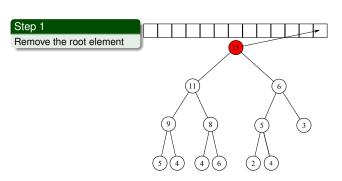


Eugenly Mikhailov (W&M) Practical Computing Lecture 08 6 / 14

Filling (sift-up) the heap

Step 2

Check if parent is larger then child. If so swap them and repeat step 2.



Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 08 7/14

Removing from the heap (sift-down) the heap

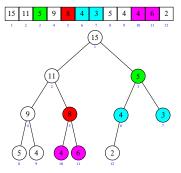
4 D > 4 D > 4 E > 4 E > E 9 Q P

Ν	lotes	

Notes

Notes

_				


Notes

110162			

Removing from the heap (sift-down) the heap Notes Step 2 Place the last element of the heap to the root Removing from the heap (sift-down) the heap Notes Step 3 Check if parent is smaller than the largest child. If so swap and repeat step 3 else go to step 1 Removing from the heap (sift-down) the heap Notes Step 3 Check if parent is smaller than the largest child. If so (11) swap and repeat step 3 else go to step 1 Removing from the heap (sift-down) the heap Notes Sequence repeats Step 1 Remove the root element (11)

Vector heap representation

- Heap nodes are numbered consequently these numbers represent the node position in the vector.
- notice that parent and children have very simple relationship
 - if parent node index is i
 - child 1 index is 2i
 - child 2 index is 2i + 1
 - if we know child index (i) then
 - parent index is floor(i/2)

Notes

Matlab built in 'issorted'

Eugeniy Mikhailov (W&M)

Easy check if an array is sorted can be done with issorted which returns true or false.

```
>> x=[1,2,3];
>> issorted(x)
```

issorted checks only for ascending order, for example

```
>> x=[3,2,1];
>> issorted(x)
ans =
```

Recall that '0' is equivalent of false in Matlab

_ `	ш	,	`	D'	-	1	Ξ	_	1	Ξ	-	=	*) Q	6.
	_			,600			100			100		196	€00	0.

Eugeniy Mikhailov (W&M)

Notes			
Notes			
Notes			