Notes

Sorting

Eugeniy E. Mikhailov

Lecture 07

		$(\Box) \land (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box)$
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 07 1 / 5
Bubble sort method		
the vector end start sweeping from the l Compare the 2 consequ- the IndexOfTheLastT if the left element is larg; move to the next pair to item 2 notice that at the end last element to check. so next sweep does n it is shorter by one ele i.e. the index of the la decreased by 1 decrease IndexOfTheI	sorted in ascending order. atTocheck be the index of beginning of the vector ent elements till we reach ocheck er we swap these 2 elements the right i.e. move to the of the sweep the index of the holds the largest element ot have to be that long. ment st element to check should be	$ \begin{aligned} x &= [3, 1, 4, 5, 2] \\ \text{first sweep} \\ x &= [3, 1, 4, 5, 2] \text{ swap} \\ x &= [1, 3, 4, 5, 2] \text{ after swap} \\ x &= [1, 3, 4, 5, 2] \text{ no swap} \\ x &= [1, 3, 4, 5, 2] \text{ no swap} \\ x &= [1, 3, 4, 5, 2] \text{ no swap} \\ x &= [1, 3, 4, 2, 5] \text{ no swap} \\ x &= [1, 3, 4, 2, 5] \text{ swep done} \\ \text{new sweep} \\ x &= [1, 3, 4, 2, 5] \text{ no swap} \\ x &= [1, 3, 4, 2, 5] \text{ no swap} \\ x &= [1, 3, 4, 2, 5] \text{ no swap} \\ x &= [1, 3, 4, 2, 5] \text{ swep done} \\ \text{new sweep} \\ x &= [1, 3, 2, 4, 5] \text{ swep done} \\ \text{new sweep} \\ x &= [1, 3, 2, 4, 5] \text{ swep done} \\ \text{new sweep} \\ x &= [1, 2, 3, 4, 5] \text{ swep done} \\ x &= [1, 2, 3, 4, 5] \text{ sweep done}$
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 07 2 / 5

Bubble sort properties

Notes

Notes

• This is the worst of all working algorithm!

- The execution time of this algorithm is $\mathcal{O}(N^2)$
- Never use it in the real life!
- However it is very simple to program, and does not require extra memory for execution.

Practical Computing

Eugeniy Mikhailov (W&M) Quick sort method

Much better yet simple algorithm Let's discuss recursive realization We will name our sorting function as <code>qsort</code>.

- choose a pivot point value
 - let's choose the pivot at the middle of the vector
 - pivotIndex=floor(N/2)
 - pivotValue=x(pivotIndex)
- create two vectors which hold lesser and larger than pivotValue elements of the input vector.
- now concatenate the result of
- xs=[qsort(lesser), pivotValue, qsort(larger)]
- done

Lecture 0

Lecture 07

Notes

Notes

usually fast

Eugeniy Mikhailov (W&M)

- typical execution time $\mathcal{O}(N \log_2 N)$
- but it is not guaranteed
 - However for certain input vectors execution time could be as long as $\mathcal{O}(N^2)$

Practical Computing

Notes

Notes

Notes
