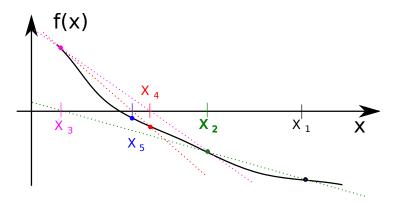
Root finding continued

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06

Secant method



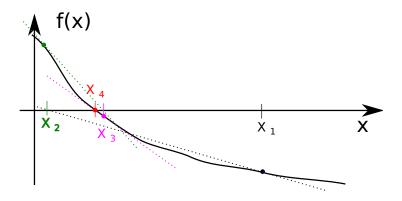
$$x_{i+2} = x_{i+1} - f(x_{i+1}) \frac{x_{i+1} - x_i}{f(x_{i+1}) - f(x_i)}$$

Need to provide two starting points x_1 and x_2 . Secant method converges with $m = (1 + \sqrt{5})/2 \approx 1.618$

Eugeniy Mikhailov (W&M)

Practical Computing

Newton-Raphson method



$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Need to provide a starting points x_1 and the derivative of the function. Newton-Raphson method converges quadratically (m = 2), m = 2),

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 06 3 / 10

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h.

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01).

4 A 1

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01). For computers with *h* small enough f(x + h) - f(x) = 0.

∃ >

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01). For computers with *h* small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01). For computers with *h* small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x+h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01). For computers with *h* small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error There is a range of optimal *h* when both the round off and the algorithm errors are small \log_{100}

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} \approx rac{f''(x)}{2}h$$

Eugeniy Mikhailov (W&M)

イロト イロト イヨト

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} \approx \frac{f''(x)}{2}h$$

This is quite bad since error is proportional to *h*.

$$f'_c(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} \approx rac{f''(x)}{2}h$$

This is quite bad since error is proportional to *h*.

Example

$$f(x) = a + bx^2$$

$$f'_c(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} \approx rac{f''(x)}{2}h$$

This is quite bad since error is proportional to *h*.

Example

$$f(x) = a + bx^2$$

 $f_c'(x) = bxh+bh$

$$f'_c(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} \approx rac{f''(x)}{2}h$$

This is quite bad since error is proportional to *h*.

Example

$$f(x) = a + bx^2$$

 $f_c'(x) = bxh+bh$

So for small x, the algorithm error dominate our approximation!

Derivative via Central difference

$$f_c'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

▲ 同 ト ▲ ヨ ト

$$f_c'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Algorithm error

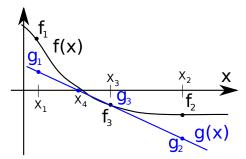
$$arepsilon_{cd} pprox rac{f^{\prime\prime\prime}(x)}{6}h^2$$

Eugeniy Mikhailov (W&M)

▲ 同 ト ▲ ヨ ト

Ridders method - smart variation of false position

Solve f(x) = 0 with the following approximation of the function $f(x) = g(x) \exp(-Cx)$, where g(x) = a + bx i.e. linear. We can also say that $g(x) = f(x) \exp(Cx)$.



When $x_3 - x_1 = x_2 - x_3 = h$ it is convenient to use the following equivalent notation

$$g(x) = f(x) \exp(C(x - x_3)) = a + bx$$

Eugeniy Mikhailov (W&M)

Practical Computing

Ridders method implementation

- bracket the root between x_1 and x_2
- 2 evaluate function in the mid point $x_3 = (x_1 + x_2)/2$
- find new approximation for the root

$$x_4 = x_3 + sign(f_1 - f_2) \frac{f_3}{\sqrt{f_3^2 - f_1 f_2}} (x_3 - x_1)$$

where
$$f_1 = f(x_1), f_2 = f(x_2), f_3 = f(x_3)$$

- check if x₄ satisfies convergence condition and we should stop
 rebracket the root using
 - x_4 and $f_4 = f(x_4)$
 - whichever of (x_1, x_2, x_3) is closer to x_4 and provides proper bracket.
- proceed to step 1

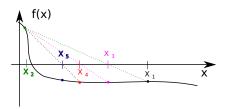
Nice parts: x_4 is guaranteed to be inside the bracket, convergence of the algorithm is quadratic m = 2. But it requires evaluation of the f(x) twice for f_3 and f_4 thus actually $m = \sqrt{2}$.

Root finding algorithm gotchas

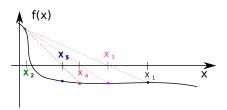
Eugeniy Mikhailov (W&M)

<ロト

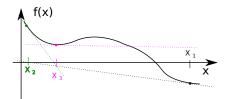
Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.



Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.



Newton-Raphson and secant algorithm are usually fast but starting points need to be close enough to the root.



Root finding algorithms summary

Root bracketing algorithms

- bisection
- false position
- Ridders

Pro

 robust i.e. always converge.

Contra

- usually slower convergence
- require initial bracketing

Non bracketing algorithms

- Newton-Raphson
- secant

Pro

- faster
- no need to bracket (just give a reasonable starting point)

Contra

may not converge

See Matlab built in function fzero for equivalent tasks.