Root finding continued

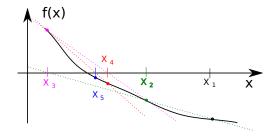
Eugeniy E. Mikhailov

The College of William & Mary

Lecture 06

Notes

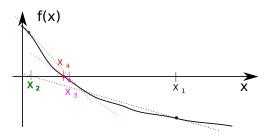
Secant method



$$x_{i+2} = x_{i+1} - f(x_{i+1}) \frac{x_{i+1} - x_i}{f(x_{i+1}) - f(x_i)}$$

Need to provide two starting points x_1 and x_2 . Secant method converges with $m=(1+\sqrt{5})/2 \approx 1.618$

Newton-Raphson method



$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Need to provide a starting points x_1 and the derivative of the function. Newton-Raphson method converges quadratically (m = 2),

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h.

Notes			
-			
Notes			
Notes			

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h. Remember about roundoff errors (HW01).

Notes

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0.

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small $\it h$. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small h. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error

Eugeniy Mikhailov (W&M)

Notes

Notes

Notes

Numerical derivative of a function

Mathematical definition

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The initial intent is to calculate it at very small *h*. Remember about roundoff errors (HW01). For computers with h small enough f(x + h) - f(x) = 0. Let's be smarter. Recall Taylor series expansion

$$f(x + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^2 + \cdots$$

So we can see

$$f'_c(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \cdots$$

Here computed approximation and algorithm error There is a range of optimal h when both the round off and the algorithm errors are small.

Derivative via Forward difference

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{fd} pprox rac{f''(x)}{2}h$$

Derivative via Forward difference

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{\rm fd} \approx \frac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Derivative via Forward difference

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

Eugeniy Mikhailov (W&M)

$$\varepsilon_{fd} \approx \frac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^2$$

notes			
-			
Notes			
Notes			
Notes 			
Notes			
Notes			

Derivative via Forward difference

$$f_c'(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{\text{fd}} pprox rac{f''(x)}{2}h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^2$$

$$f_c'(x) = bxh + bh$$

Eugeniy Mikhailov (W&M)

Practical Computing

Derivative via Forward difference

$$f'_c(x) = \frac{f(x+h) - f(x)}{h}$$

Algorithm error

$$\varepsilon_{\rm fd} \approx \frac{f''(x)}{2} h$$

This is quite bad since error is proportional to h.

Example

$$f(x) = a + bx^2$$

$$f_c'(x) = bxh + bh$$

So for small x, the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M)

Practical Computing

Derivative via Central difference

$$f_c'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Derivative via Central difference

$$f_G'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Algorithm error

$$\varepsilon_{cd} pprox rac{f'''(x)}{6} h^2$$

Notes

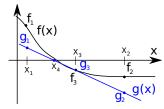
Notes

Notes

Notes

Ridders method - smart variation of false position

Solve f(x) = 0 with the following approximation of the function $f(x) = g(x) \exp(-Cx)$, where g(x) = a + bx i.e. linear. We can also say that $g(x) = f(x) \exp(Cx)$.



When $x_3 - x_1 = x_2 - x_3 = h$ it is convenient to use the following equivalent notation

$$g(x) = f(x) \exp(C(x - x_3)) = a + bx$$

Notes

Ridders method implementation

- lacksquare bracket the root between x_1 and x_2
- ② evaluate function in the mid point $x_3 = (x_1 + x_2)/2$
- find new approximation for the root

$$x_4 = x_3 + sign(f_1 - f_2) \frac{f_3}{\sqrt{f_3^2 - f_1 f_2}} (x_3 - x_1)$$

where $f_1 = f(x_1), f_2 = f(x_2), f_3 = f(x_3)$

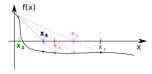
- check if x_4 satisfies convergence condition and we should stop
- rebracket the root using
 - x_4 and $f_4 = f(x_4)$
 - whichever of (x_1, x_2, x_3) is closer to x_4 and provides proper bracket.
- proceed to step 1

Nice parts: x_4 is guaranteed to be inside the bracket, convergence of the algorithm is quadratic m = 2. But it requires evaluation of the f(x)twice for f_3 and f_4 thus actually $m = \sqrt{2}$.

Root finding algorithm gotchas

Root finding algorithm gotchas

Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.



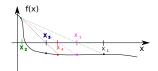
Notes

Notes

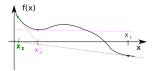
Notes

Root finding algorithm gotchas

Bracketing algorithm are bullet proof and will always converge, however false position algorithm could be slow.



Newton-Raphson and secant algorithm are usually fast but starting points need to be close enough to the root.



Notes

Root finding algorithms summary

Root bracketing algorithms

- bisection
- false position
- Ridders

• robust i.e. always converge.

Contra

- usually slower convergence
- require initial bracketing

Non bracketing algorithms

- Newton-Raphson
- secant

Pro

- faster
- no need to bracket (just give a reasonable starting point)

Contra

may not converge

See Matlab built in function fzero for equivalent tasks.

Notes		
Notes		
-		
Notes		
140103		
Notes		