Root finding problem

Generally we want to solve the following canonical problem

\[f(x) = 0 \]

Example

\[2 \sin(x) - 1 = 0 \]

Often we have a problem which looks slightly different

\[h(x) = g(x) \]

But it is easy to transform to canonical form with

\[f(x) = h(x) - g(x) = 0 \]

Example

\[3x^3 + 2 = \sin x \rightarrow 3x^3 + 2 - \sin x = 0 \]
Root finding problem

Generally we want to solve the following canonical problem

\[f(x) = 0 \]

Example

\[2 \sin(x) - 1 = 0 \]
Root finding problem

Generally we want to solve the following canonical problem

\[f(x) = 0 \]

Example

2 \(\sin(x) - 1 = 0 \)

Often we have a problem which looks slightly different

\[h(x) = g(x) \]
Root finding problem

Generally we want to solve the following canonical problem

\[f(x) = 0 \]

Example

\[2 \sin(x) - 1 = 0 \]

Often we have a problem which looks slightly different

\[h(x) = g(x) \]

But it is easy to transform to canonical form with

\[f(x) = h(x) - g(x) = 0 \]
Root finding problem

Generally we want to solve the following canonical problem

\[f(x) = 0 \]

Example

\[2 \sin(x) - 1 = 0 \]

Often we have a problem which looks slightly different

\[h(x) = g(x) \]

But it is easy to transform to canonical form with

\[f(x) = h(x) - g(x) = 0 \]

Example

\[3x^3 + 2 = \sin x \quad \rightarrow \quad 3x^3 + 2 - \sin x = 0 \]
Trial and error method

One can try to get the solution by just guessing with a hope to hit the solution. This is not highly scientific.

A general search algorithm is the following:

1. Make a guess (trial)
2. Make an intelligent new guess (x_{i+1}) judging from this trial (x_i)
3. Continue until $|f(x_{i+1})| > \varepsilon$ and $|x_{i+1} - x_i| > \varepsilon$

Example:

Let's play a simple game:

Someone thinks of any number between 1 and 100.

I make a guess.

You provide me with either "less" or "more" depending on where is my guess with respect to your number.

How many guesses do I need?

At most 7.
Trial and error method

One can try to get the solution by just guessing with a hope to hit the solution. This is not highly scientific. However each guess can provide some clues.

A general search algorithm is the following:

- make a guess \(i \) (trial)
- make intelligent new guess \((x_{i+1}) \) judging from this trial \((x_i) \)
- continue until
 \[
 |f(x_{i+1})| > \varepsilon \\
 |x_{i+1} - x_i| > \varepsilon
 \]

Example:

Let’s play a simple game: someone think of any number between 1 and 100, I will make a guess, you provide me with either “less” or “more” depending where is my guess with respect to your number. How many guesses do I need? At most 7.
Trial and error method

One can try to get the solution by just guessing with a hope to hit the solution. This is not highly scientific. However each guess can provide some clues.

A general search algorithm is the following:

1. make a guess i.e. trial
2. make intelligent new guess \((x_{i+1})\) judging from this trial \((x_i)\)
3. continue until \(|f(x_{i+1})| > \varepsilon_f\) and \(|x_{i+1} - x_i| > \varepsilon_x\)

Example:
Let's play a simple game:
Some one think of any number between 1 and 100.
I will make a guess.
You provide me with either "less" or "more" depending where is my guess with respect to your number.

How many guesses do I need?
At most 7
Trial and error method

One can try to get the solution by just guessing with a hope to hit the solution. This is not highly scientific. However each guess can provide some clues.

A general search algorithm is the following

- make a guess i.e. trial
- make intelligent new guess \((x_{i+1}) \) judging from this trial \((x_i) \)
- continue until \(|f(x_{i+1})| > \varepsilon_f \) and \(|x_{i+1} - x_i| > \varepsilon_x \)

Example

Let’s play a simple game:

- some one think of any number between 1 and 100
- I will make a guess
- you provide me with either “less” or “more” depending where is my guess with respect to your number

How many guesses do I need?
Trial and error method

One can try to get the solution by just guessing with a hope to hit the solution. This is not highly scientific. However each guess can provide some clues.

A general search algorithm is the following

- make a guess i.e. trial
- make intelligent new guess \((x_{i+1})\) judging from this trial \(x_i\)
- continue until \(|f(x_{i+1})| > \varepsilon_f\) and \(|x_{i+1} - x_i| > \varepsilon_x\)

Example

Let’s play a simple game:

- some one think of any number between 1 and 100
- I will make a guess
- you provide me with either “less” or “more” depending where is my guess with respect to your number

How many guesses do I need? At most 7
Bisection method pseudo code

Works for any **continuous function** in vicinity of function root

- make initial bracket for search x_+ and x_- such that
 - $f(x_+) > 0$
 - $f(x_-) < 0$

- loop begins
- make new guess value $x_g = (x_+ + x_-)/2$
- if $|f(x_g)| \leq \varepsilon_f$ or $|x_+ - x_g| \leq \varepsilon_x$
 - stop we found the solution with desired approximation
- otherwise if $f(x_g) > 0$ then $x_+ = x_g$ else $x_- = x_g$
- continue the loop
function x_sol=bisection(f, xn, xp, eps_f, eps_x)
% solving f(x)=0 with bisection method

xg=(xp+xn)/2; % initial guess
fg=f(xg); % initial function evaluation

while ((abs(fg) > eps_f) & (abs(xg-xp)>eps_x))
 if (fg>0)
 xp=xg;
 else
 xn=xg;
 end
 xg=(xp+xn)/2; % update guess
 fg=f(xg); % update function evaluation
end

x_sol=xg; % solution is ready
end
Let’s define simple test function in the file 'function_to_solve.m'

```matlab
function ret=function_to_solve(x)
    ret=(x-10)*(x-20)*(x+3);
end
```

Always cross check results

```matlab
>> function_to_solve(x0)
an = 3.0631e-07
```
Bisection - example of use

Let's define simple test function in the file 'function_to_solve.m'

```matlab
function ret = function_to_solve(x)
    ret = (x - 10) * (x - 20) * (x + 3);
end
```

pay attention to the function handle operator @

```matlab
eps_x = 1e-8;
eps_f = 1e-6;
x0 = bisection(...
    @function_to_solve,...
    -4.1, 2, ...
    eps_f, eps_x)
```

always cross check results

```matlab
>> function_to_solve(x0)
an = 3.0631e-07
```
Let’s define simple test function in the file ‘function_to_solve.m’

```matlab
function ret=function_to_solve(x)
    ret=(x-10)*(x-20)*(x+3);
end
```

pay attention to the function handle operator @

```matlab
eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...
    @function_to_solve,...
    -4.1, 2, ...
    eps_f, eps_x)
```

\[x0 = -3.0000 \]
Bisection - example of use

Let’s define simple test function in the file ‘function_to_solve.m’

```matlab
function ret=function_to_solve(x)
    ret=(x-10)*(x-20)*(x+3);
end
```

Pay attention to the function handle operator `@`

```matlab
eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...
    @function_to_solve,...
    -4.1, 2, ...
    eps_f, eps_x)
```

Always cross check results

```matlab
x0 = -3.0000
```

```matlab
>> function_to_solve(x0)
anans = 3.0631e-07
```
Let’s define simple test function in the file ‘function_to_solve.m’

```matlab
function ret=function_to_solve(x)
    ret=(x-10)*(x-20)*(x+3);
end
```

pay attention to the function handle operator @

```matlab
esx_x=1e-8;
esx_f=1e-6;
x0=bisection(...
    @function_to_solve,...
    -4.1, 2, ...
    esx_f, esx_x)
```

always cross check results

```matlab
x0 = -3.0000
```

```matlab
ans = 3.0631e-07
```
Bisection - example of use

Let’s define simple test function in the file ’function_to_solve.m’

```matlab
function ret=function_to_solve(x)
    ret=(x-10)*(x-20)*(x+3);
end
```

pay attention to the function handle operator @

```matlab
eps_x=1e-8;
eps_f=1e-6;
x0=bisection(...
    @function_to_solve, ...
    -4.1, 2, ...
    eps_f, eps_x)
```

always cross check results

```matlab
x0 = -3.0000
>> function_to_solve(x0)
an = 3.0631e-07
```
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments. People make mistakes, typos and all sorts of misuse. "If something can go wrong it will" Muphry's Law. Never expect that user will put valid inputs.

So what should we check for sure

1. \(f(x_n) < 0 \)
2. \(f(x_p) > 0 \)

It would be handy to return secondary outputs with the value of function at the found solution point, the number of iterations (good for performance tests).
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments.

1. \(f(x_n) < 0 \)
2. \(f(x_p) > 0 \)

It would be handy to return secondary outputs with the value of the function at the found solution point and the number of iterations (good for performance tests).
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments. People make mistakes, typos and all sorts of misuse.

1. \(f(x_n) < 0 \)
2. \(f(x_p) > 0 \)

It would be handy to return secondary outputs with the value of function at the found solution point, the number of iterations (good for performance tests).
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments. People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”

Murphy’s Law
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments. People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”

Muphry’s Law

Never expect that user will put valid inputs.
What is missing in the bisection code?

The simplified bisection code is missing validation of input arguments. People make mistakes, typos and all sorts of misuse.

“If something can go wrong it will”

Muphry’s Law

Never expect that user will put valid inputs.

So what should we check for sure

1. $f(x_n) < 0$
2. $f(x_p) > 0$

It would be handy to return secondary outputs

- with the value of function at the found solution point
- the number of iterations (good for performance tests)
False position (*regula falsi*) method

In this method we naively approximate our function as a line.
False position method - pseudo code

- make initial bracket for search x_+ and x_- such that
 - $f(x_+) > 0$
 - $f(x_-) < 0$
- loop begins
- draw a chord between points $(x_-, f(x_-))$ and $(x_+, f(x_+))$
- make new guess value at the point of the chord intersection with the ’x’ axis
 \[x_g = \frac{x_- f(x_+) - x_+ f(x_-)}{f(x_+) - f(x_-)} \]
- if $|f(x_g)| \leq \varepsilon_f$ or $|x_+ - x_g| \leq \varepsilon_x$
 stop we found the solution with desired approximation
- otherwise if $f(x_g) > 0$ then $x_+ = x_g$ else $x_- = x_g$
- continue the loop

Note: it looks like bisection except the way of updating x_g
Solution convergence

We say that algorithm has defined convergence if it is possible to express

$$\lim_{k \to \infty} (x_{k+1} - x_0) = c(x_k - x_0)^m$$

Where x_0 is true root of the equation, c is some constant, and m is the order of convergence.
Solution convergence

We say that algorithm has defined convergence if it is possible to express

$$\lim_{k \to \infty} (x_{k+1} - x_0) = c(x_k - x_0)^m$$

Where x_0 is true root of the equation, c is some constant, and m is the order of convergence.
The best algorithm have quadratic convergence i.e. $m = 2$
We say that algorithm has defined convergence if it is possible to express

$$\lim_{k \to \infty} (x_{k+1} - x_0) = c(x_k - x_0)^m$$

Where x_0 is true root of the equation, c is some constant, and m is the order of convergence.

The best algorithm have quadratic convergence i.e. $m = 2$

- the bisection algorithm has linear rate of convergence ($m = 1$) and $c = 1/2$
- it is generally impossible to define convergence order for the false position method
Solution convergence

We say that algorithm has defined convergence if it is possible to express
\[
\lim_{k \to \infty} (x_{k+1} - x_0) = c(x_k - x_0)^m
\]

Where \(x_0\) is true root of the equation, \(c\) is some constant, and \(m\) is the order of convergence.

The best algorithm have quadratic convergence i.e. \(m = 2\)
- the bisection algorithm has linear rate of convergence \((m = 1)\) and \(c = 1/2\)
- it is generally impossible to define convergence order for the false position method

Generally the speed of the algorithm is related to its convergence order. How ever other factors may affect the speed.