Boolean algebra, conditional statements, loops.

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 03

∃ ⊳

Variable of boolean type can have only two values

- true
- false

<ロト

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false (Matlab uses 0)

- 同下 - 三下 - 三

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false (Matlab uses 0)

There are three logical operators which are used in boolean algebra

∃ ► 4

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false (Matlab uses 0)

There are three logical operators which are used in boolean algebra

• - logic not, Matlab ~

 \neg true = false

 \neg false = true

A = b

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false (Matlab uses 0)

There are three logical operators which are used in boolean algebra

¬ - logic not, Matlab ~

 \neg true = false \neg false = true

• \wedge - logic **and**, Matlab &

$$A \wedge B = \begin{cases} \text{true, if } A = \text{true and } B = \text{true,} \\ \text{false, otherwise} \end{cases}$$

Eugeniy Mikhailov (W&M)

A E > 4

Variable of boolean type can have only two values

- true (Matlab use 1 to indicate it, actually everything but zero)
- false (Matlab uses 0)

There are three logical operators which are used in boolean algebra

Iogic not, Matlab ~

 \neg true = false \neg false = true

• \wedge - logic and, Matlab &

$$A \wedge B = egin{cases} { t true, if A=true and B=true,} \\ { t false, otherwise} \end{cases}$$

 \bullet \lor - logic **or**, Matlab

$$A \lor B = \begin{cases} \text{false, if } A = \text{false and } B = \text{false,} \\ \text{true, otherwise} \end{cases}$$

If A = false, B = true, C = true

 $A | \sim B \& C$

< ロ ト < 回 ト < 注 ト < 注</p>

If A = false, B = true, C = true

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

4 A 1

If A = false, B = true, C = true

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

< (P) > < (P) > (P

If A = false, B = true, C = true

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

Thus

 $A|\sim B\&C = false$

• • • • • • • •

If
$$A = false$$
, $B = true$, $C = true$

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

Thus

A
$$|{\sim}B\&C=$$
 false

"Cat is an animal and cat is not an animal"

If
$$A = false$$
, $B = true$, $C = true$

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

Thus

A
$$|{\sim}B\&C=$$
 false

"Cat is an animal and cat is not an animal" is false statement

< ∃ >

If
$$A = false$$
, $B = true$, $C = true$

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

Thus

A
$$|{\sim}B\&C=$$
 false

"Cat is an animal and cat is not an animal" is false statement

$$\sim$$
Z&Z $=$

< ∃ >

If
$$A = false$$
, $B = true$, $C = true$

 $A|\sim B\&C$

 \sim has highest precedence, then &, and then

 $A|((\sim B)\&C)$

Thus

A
$$|{\sim}B\&C=$$
 false

"Cat is an animal and cat is not an animal" is false statement

$$\sim Z\&Z = false$$

< ∃ >

- Liars always lie and never speak a word of truth.
- Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be the answer to your question "Who are you?"

- Liars always lie and never speak a word of truth.
- Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be the answer to your question "Who are you?"

• The answer always will be "Truthlover".

- Liars always lie and never speak a word of truth.
- Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be the answer to your question "Who are you?"

• The answer always will be "Truthlover".

Now you see a person who answers to your question. "I am a liar." Is it possible?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Liars always lie and never speak a word of truth.
- Truthlovers always speak only truth.

Suppose, you are landed on this island and met a person. What will be the answer to your question "Who are you?"

• The answer always will be "Truthlover".

Now you see a person who answers to your question. "I am a liar." Is it possible?

• This makes a paradox and should not ever happen on this island.

イロト イロト イヨト

• 123.3 & 12=

イロト イロト イヨト イヨト

- 123.3 & 12=**1**
- ~ 1232e-6 =

イロト イロト イヨト イヨト

- 123.3 & 12=**1**
- ~ 1232e-6 = **0**

イロト イロト イヨト イヨト

>> B=[1.22312, 0; 34.343, 12]

B =

- 1.2231 0
- 34.3430 12.0000

イロト イポト イヨト イヨト

>> B=[1.22312, 0; 34.343, 12]

в =

- 1.2231 0
- 34.3430 12.0000

~B

イロト イポト イヨト イヨト

>> B=[1.2	2312, 0; 34.343, 12]
в =	
1.2231	0
34.3430	12.0000
-	
~B	
ans =	
0 1	
0 0	

イロト イポト イヨト イヨ

>> B=[1.22	312,	0;	34.343	З,	12]			
в =									
1.2231		0							
34.343	0	12.00	000						
~B									
ans =									
0	1								
0	0								

B | ~B

<ロト

>> B=[1.22	2312, 0;	34.343,	12]	
в =				
1.2231	0			
34.3430	12.0000			
5				
~B				
ans =				
0 1				
0 0				
B ~B				
			ans =	
"To be or not to be"			1	1

Eugeniy Mikhailov (W&M)

Practical Computing

1

1 1

```
>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000
>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000
```

```
>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000
>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000
```

B&A

イロト イポト イヨト イヨト

```
>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000
>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000
```

B&A			
ans	=		
1	0		
0	1		

Eugeniy Mikhailov (W&M)

イロト イポト イヨト イヨト

```
>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000
>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000
```

Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 03	6/19
			୬୯୯
0 1			
1 0			
ans =			
B&A	A ~B		

```
>> B=[1.22312, 0; 34.343, 12]
B =
1.2231 0
34.3430 12.0000
>> A=[56, 655; 0, 24.4]
A =
56.0000 655.0000
0 24.4000
```

Eugeniy Mikhailov (W&M)	Practical Computing		Lecture 03	6/19
			$\vdash \forall \equiv \vdash - \equiv$	990
0 1	0	1		
1 0	1	1		
ans =	ans =			
B&A	A ~B			

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	$\sim =$
<	<
\leq	<=
>	>
\geq	>=

< □ > < □ > < □ > < □ > < □ >

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	~=
<	<
\leq	<=
>	>
\geq	>=

x=	=[1,2	2,3,4	1,5]			
х	=					
	1	2	3	4	5	

< □ > < □ > < □ > < □ > < □ >

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	$\sim =$
<	<
\leq	<=
>	>
\geq	>=

ъ

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	$\sim =$
<	<
\leq	<=
>	>
\geq	>=

x=[1,2	2,3,4	4,5]			
x =					
1	2	3	4	5	
x >= 3					
ans =					
0	0	1	1	1	

Eugeniy Mikhailov (W&M)

< ロト < 回 ト < 注 ト < 注</p>

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	$\sim =$
<	<
\leq	<=
>	>
\geq	>=

Eugeniy Mikhailov (W&M)

Lecture 03 7 / 19

Comparison operators

Math	Matlab
=	== double equal sign!
\neq	$\sim =$
<	<
\leq	<=
>	>
\geq	>=

Eugeniy M	Mikhailov	(W&M)			Practical Computing Lecture 03	7/19
					3 4 5	2
0	0	1	1	1	ans =	
ans =						
					$x(x \ge 3)$	
x >= 3					% chose such $'x'$ where $x \ge 3$	
1	2	3	4	5		
x =						
x=[1,2	,3,4	4,5]				

>> A=	[1,2;3,4]	>> B=[33,11;53,4	12]
A =		В =	
1	2	22 11	
3	4	53 42	

Image: A math a math

>> A=[1,2;3,4]	>> B=[33,11;53,42]
A =	В =
1 2	22 11
3 4	53 42

A>=2

<ロト

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	>> A=[1,2;3,4]	>> B=[33,11;53,42]
1 2 22 11 3 4 53 42	A =	В =
3 4 53 42	1 2	22 11
5 1 55 12	3 4	53 42

A>=	=2	

ans	=			
0		1		
1		1		

>> A=[1,2;3,4]	>> B=[33,11;53,42]
A =	B =
1 2	22 11
3 4	53 42

ans	=			
0		1		
1		1		

Image: A match a ma

>> A=	[1,2;3,4]	>> B=[33,1	1;53,42]
A =		в =	
1	2	22 11	
3	4	53 42	

A>=2	A(A>=2)
ans =	ans =
0 1	3
1 1	2
	4

イロト イロト イヨト

>> A=[1,2;3,4]		>> B=[3	33,11;53,42]
A =		в =	
1 2		22	11
3 4		53	42
A>=2	A(A>=2)		B(A>=2)
			Chose such
ans =	ans =		elements of B where
0 1	3		
1 1	2		elements of A≥2
	4		

イロト イロト イヨト イヨ

>> A=[1,2;3,4] A = 1 2 3 4		>> B=[B = 22 53	33,11;53,42] 11 42
A>=2 ans = 0 1 1 1	A(A>=2) ans = 3 2		B (A>=2) Chose such elements of B where elements of $A \ge 2$
1 1	4		ans = 53 11 42 <□→ <∄→ < ≧→ < ≧→ ≥ 少へ

if expression this part is executed only if expression is true

else

this part is executed only if *expression* is false

end

< 同 ト < 三 ト

if expression this part is executed only if expression is true

else

this part is executed only if *expression* is false end if hungry buy some food else keep working end

< 同 ト < 三 ト

if *expression* this part is executed only if *expression* is true

else

this part is executed only if *expression* is false end if hungry buy some food else keep working end

```
if (x>=0)
  y=sqrt(x);
else
  error('cannot do');
end
```

- 4 ∃ ►

Common mistake in the 'if' statement

if (x=y)
 D=4;
 Z=45;
 C=12;
else
 D=2;
end

イロト イポト イヨト イヨ

if (x=y)
 D=4;
 Z=45;
 C=12;
else
 D=2;
end

the value of 'D' is always 4, except the case when y=0

Eugeniy Mikhailov (W&M)

if (x=y)
 D=4;
 Z=45;
 C=12;
else
 D=2;
end

the value of 'D' is always 4, except the case when y=0 someone used assignment operator (=) instead of comparison (==)

Eugeniy Mikhailov (W&M)

if expression this part is executed only if expression is true end

if expression this part is executed if won a million only if expression is go party true end end

if expression this part is executed only if expression is true end

if won a million go party end

```
if (deviation<=0)
    exit;
end</pre>
```

< 61 b

while *expression* this part is executed while *expression* is true end

while expression this part is executed while expression is kee true end

while *hungry* keep eating end

while *expression* this part is executed while *expression* is true end

while *hungry* keep eating end

```
i=1;
while (i<=10)
    c=a+b;
    z=c*4+5;
    i=i+2;
end
```

while <i>expression</i>	
this part is executed	while <i>hungry</i>
while <i>expression</i> is	keep eating
true	end
end	

```
i=1;
while (i<=10)
    c=a+b;
    z=c*4+5;
    i=i+2;
end
```

while loop is extremely useful but they are not guaranteed to finish. For a bit more complicated conditional statement and loop it is impossible to predict if the loop will finish.

while expression	
this part is executed	while <i>hungry</i>
while <i>expression</i> is	keep eating
true	end
end	

```
i=1;
while (i<=10)
    c=a+b;
    z=c*4+5;
    i=i+2;
end
```

イロト イロト イヨト

while loop is extremely useful but they are not guaranteed to finish. For a bit more complicated conditional statement and loop it is impossible to predict if the loop will finish.

Yet another common mistake is

```
i=1;
while (i<=10)
    c=a+b;
end
```

while <i>expression</i>	
this part is executed	while <i>hungry</i>
while <i>expression</i> is	keep eating
true	end
end	

```
i=1;
while (i<=10)
    c=a+b;
    z=c*4+5;
    i=i+2;
end
```

while loop is extremely useful but they are not guaranteed to finish. For a bit more complicated conditional statement and loop it is impossible to predict if the loop will finish.

Yet another common mistake is

not updating the term leading to fulfillment of the while condition

Eugeniy Mikhailov (W&M)

for variable = *expression* do something

end

In this case variable is assigned concequently with columns of the *expression*, and then statements inside of the loop are executed

→ Ξ →

for variable = *expression* do something end In this case variable is assigned concequently with columns of the *expression*, and then statements inside of the loop are executed

```
sum=0;
x=[1,3,5,6]
for v=x
    sum=sum+v;
end
>> sum
sum =
    15
```

• • • • • • • •

```
for variable = expressionx=do somethingforendforIn this case variable is assignedendconcequently with columns of theexpression, and then statements inside ofthe loop are executedsum
```

```
sum=0;
x=[1,3,5,6]
for v=x
    sum=sum+v;
end
>> sum
sum =
    15
```

for loops are guaranteed to complete after predictable number of iterations (the amount of columns in *expression*).

$$S = \sum_{i=1}^{100} i = 1 + 2 + 3 + 4 + \dots + 99 + 100$$

イロト イヨト イヨト イヨト

$$S = \sum_{i=1}^{100} i = 1 + 2 + 3 + 4 + \dots + 99 + 100$$

S=0; i=1; while(i<=100) S=S+i; i=i+1; end

イロト イロト イヨト イヨト

$$S = \sum_{i=1}^{100} i = 1 + 2 + 3 + 4 + \dots + 99 + 100$$

S=0; i=1; while(i<=100) S=S+i; i=i+1; end S=0; for i=1:100 S=S+i; end

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

₹ 990

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

```
S=0; k=1;
while( (k<=100) & (k^-k >= 1e-5) )
   S=S+k^-k;
   k=k+1;
end
```

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

```
S=0; k=1;
while( (k<=100) & (k^-k >= 1e-5) )
   S=S+k^-k;
   k=k+1;
end
>> S
S =
```

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

<ロト <回 > < 回 > < 回 > .

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

Same example with 'for' loop and use of matrix ops

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

I > <
 I >
 I

Same example with 'for' loop and use of matrix ops

$$S = \sum_{k=1}^{\infty} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

```
S=0;
for k=1:100
   a_k=k^-k;
   if (a_k < 1e-5)
        break;
        end
   S=S+a_k;
end
```

Same example with 'for' loop and use of matrix ops

$$S = \sum_{k=1}^{k} a_k$$

Until k<=100 and $a_k \ge 10^{-5}$, where $a_k = k^{-k}$.

S=0; for k=1:100 a_k=k^-k; if (a_k < 1e-5) break; end S=S+a_k; end >> S

S =

Often it is more elegant to use built in Matlab matrix operators

Note

- use of the *choose* elements construct
- built in sum function

Suppose bank gave you 50% interest rate (let's call it 'x'), and you put one dollar in.

How much would you get at the end of the year?

• one payment at the end of the year

$$M_1 = 1 * (1 + x) = 1 * (1 + .5) = 1.5$$

Suppose bank gave you 50% interest rate (let's call it 'x'), and you put one dollar in.

How much would you get at the end of the year?

• one payment at the end of the year

$$M_1 = 1 * (1 + x) = 1 * (1 + .5) = 1.5$$

interest payment every half a year

$$M_2 = 1 * (1 + x/2) * (1 + x/2) = 1 * (1 + .5/2)^2 = 1.5625$$

Suppose bank gave you 50% interest rate (let's call it 'x'), and you put one dollar in.

How much would you get at the end of the year?

• one payment at the end of the year

$$M_1 = 1 * (1 + x) = 1 * (1 + .5) = 1.5$$

interest payment every half a year

$$M_2 = 1 * (1 + x/2) * (1 + x/2) = 1 * (1 + .5/2)^2 = 1.5625$$

• interest payment every month

$$M_{12} = 1 * (1 + x/12)^{12} = 1.6321$$

Interest rate related example

Now let's find how you money growth (M_N) depends on the number of payments per year

```
x=.5;
N max=100;
N=1:N max;
M=0*(N); % since N is vector M will be a vector too
for i=N
 M(i) = (1+x/i)^{i};
end
plot(N, M, '-');
xlabel('N, number of payments per year');
ylabel('Money grows');
title('Money grows vs number of payments per year');
```

Of course we do not need computer to show that $M_{\infty} = e^x = 1.6487$ but we need it to calculate something like $M_{1001} - M_{1000} = 2.0572 \times 10^{-7}$

Eugeniy Mikhailov (W&M)

Interest rate related example

Eugeniy Mikhailov (W&M)

Practical Computing

Lecture 03 19 / 19