### Notes

Notes

123, -345, 0

# Matlab variable types

### integer

123, -345, 0

Eugeniy Mikhailov (W&M)

- real or float

  - 12.2344
     5.445454
     engineering notation
    - 4.2323e-9 = 4.2323 × 10<sup>-9</sup>

#### Notes

Eugeniy Mikhailov (W&M) Practical Computing

Practical Computing

Notes

0

Lecture 02

2 / 25

### Matlab variable types

#### integer

- 123, -345, 0
- real or float
  - 12.2344
  - 5.445454
  - engineering notation
  - 4.2323e-9 = 4.2323 × 10<sup>-9</sup>
- complex
  - $i = \sqrt{-1} = 1i$
  - 34.23+21.21i
  - (1+1i) \* (1-1i) = 2

#### . ∂• Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 0/05 Matlab variable types Notes integer 123, -345, 0 real or float • 12.2344 • 5.445454 engineering notation • 4.2323e-9 = 4.2323 × 10<sup>-9</sup> • complex • $i = \sqrt{-1} = 1i$ • 34.23+21.21i • (1+1i) \* (1-1i) = 2 • strings (put your words inside apostrophes) • handy for file names and messages • 'programming is fun' • s='Williamsburg' Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 2/25 Some built in constants and functions Notes • $\pi = 3.141592653589793238462643383279502 \cdots$ • use pi • trigonometry functions By default angle is in radians But can be done in degrees • sin, cos, tan, cot • sind, cosd, tand, cotd • asin, acos, atan, acot • asind, acosd, atand, acotd sin(pi/2)=1 sind(90)=1 • hyperbolic functions • sinh, cosh, tanh, coth $\bullet$ asinh, acosh, atanh, acoth logarithms natural log • base of 10 log10 o power • x<sup>y</sup> use x<sup>y</sup> or alternatively power (x, y) • e<sup>y</sup> use exp (y) Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 Assignment operator Notes

4/25

Notes

x = 1.2 + 3.4

Eugeniy Mikhailov (W&M)

### Assignment operator

#### x = 1.2 + 3.4

Despite the look = is not an equality operator. = is an assignment operator.

### Notes

#### Notes

## x = 1.2 + 3.4

Despite the look = is not an equality operator.

### = is an assignment operator.

Eugeniy Mikhailov (W&M)

Assignment operator

The expression above should be read as

• evaluate expression at the right hand side of equality symbol

Practical Computing

Ð

Lecture 02

Lecture 02

Lecture 02

- assign the result of the RHS to the variable on the left hand sign
- now variable x holds the value 4.6

We are free to use the value of the variable  $\times$  in any further expressions

### > x + 4.2 ans = 8.8

Practical Computing

Efficient editing - Tab-completition

#### Notes

Once you typed some expressions in "Command window"

- type couple of first symbols of variable or function name
- hit tab and you will get

Eugeniv Mikhailov (W&M)

- either fully typed name (if it is uniq)
- or little chart with choices
  - use <up> or <down> arrows to choose
  - alternatively <Ctrl-p>, <Ctrl-n>
  - then hit <enter> to make your choise

### Help related commands

ugeniv Mikhailov (W&M)

#### Notes

These are the most important commands

- $\bullet$  docsearch word
  - will search for word in the help files and show up matched help files
    example: docsearch trigonometry

Practical Computing

- help name
  - output short help text into "Command window" about
  - function/method named name
  - example: help sin
- doc name
  - show a reference page about function/method named name in the help vrowser
  - usually has more information compare to help name
  - example: doc sin

### **Operator Precedence**

### Look at the following Matlab expression

### -2^4\*5 + tan(pi/8+pi/8)^2

### Guess the answer.

|                         |                     | ( ) < | → (E) E    | ୬୯୯    |
|-------------------------|---------------------|-------|------------|--------|
| Eugeniy Mikhailov (W&M) | Practical Computing |       | Lecture 02 | 7 / 25 |
| Operator Preceder       | nce                 |       |            |        |

### Look at the following Matlab expression

-2^4\*5 + tan(pi/8+pi/8)^2

### Guess the answer.

- (2^4)\*5 + (tan( (pi/8+pi/8) ))^2

**Operator Precedence** 

### Look at the following Matlab expression

-2^4\*5 + tan(pi/8+pi/8)^2

Practical Computing

### Guess the answer.

Eugeniy Mikhailov (W&M)

```
- (2^4)*5 + (tan( (pi/8+pi/8) ))^2
```

```
-(16)*5+(tan((pi/4)))^2
```

Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 **Operator Precedence** Look at the following Matlab expression -2^4\*5 + tan(pi/8+pi/8)^2 Guess the answer.

- 
$$(2^4) \times 5$$
 +  $(\tan((pi/8+pi/8)))^2$ 

Lecture 02

Notes



Notes

### **Operator Precedence**

### Look at the following Matlab expression

-2^4\*5 + tan(pi/8+pi/8)^2

#### Guess the answer.

- $(2^4) * 5 + (tan( (pi/8+pi/8) ))^2$ 
  - $(16) * 5 + (tan( (pi/4) ))^2$
  - $-80 + (1)^2 = -80 + 1$



Operator Precedence

### Look at the following Matlab expression

-2^4\*5 + tan(pi/8+pi/8)^2

Practical Computing

Guess the answer.

Eugeniv Mikhailov (W&M)

- (2^4)\*5 + (tan( (pi/8+pi/8) ))^2

 $-(16)*5+(tan((pi/4)))^2$ 

 $-80 + (1)^2 = -80 + 1 = -79$ 

Rule of thumb: if not sure use extra parentheses ()

### **Operator Precedence**

Eugeniy Mikhailov (W&M)

#### Look at the following Matlab expression

 $-2^{4}+5 + \tan(pi/8+pi/8)^{2}$ 

Practical Computing

#### Guess the answer.

-  $(2^4) * 5 + (tan( (pi/8+pi/8)))^2$ 

$$-(16)*5+(tan((pi/4)))^2$$

 $-80 + (1)^2 = -80 + 1 = -79$ 

Rule of thumb: if not sure use extra parentheses ()

- Read more by executing doc precedence
- or searching for 'precedence' in the help browser.

#### Notes

### Notes

### Notes

Lecture 02

Lecture

### Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- $\bullet$  a number is the case of 1  $\times$  1 matrix

### Notes

## Eugeniy Mikhailov (W&M) Matrices

Practical Computing

\_\_\_\_\_

Lecture 02

Lecture 02

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- $\bullet\,$  a number is the case of 1  $\times$  1 matrix

Let's create a  $3 \times 5$  matrix (3 rows and 5 columns)

| >> | Mz=zeros(3,5) |   |   |   |  |  |  |  |  |
|----|---------------|---|---|---|--|--|--|--|--|
| Mz | =             |   |   |   |  |  |  |  |  |
| 0  | 0             | 0 | 0 | 0 |  |  |  |  |  |
| 0  | 0             | 0 | 0 | 0 |  |  |  |  |  |
| 0  | 0             | 0 | 0 | 0 |  |  |  |  |  |
|    |               |   |   |   |  |  |  |  |  |

This is not the only way, but it is one which make sure that matrix is filled with zeros

Note: it is possible to have more than 2 dimensional arrays.

| Eugeniy Mikhailov (W8M) Practical Computing Lecture 0 | 2 8/25 |
|-------------------------------------------------------|--------|
|                                                       |        |
| Matrix elements assignment                            |        |
|                                                       |        |
| >> Mz(2,4)=1 % 2nd row, 4th column                    |        |
|                                                       |        |
| Mz =                                                  |        |
| 0 0 0 0                                               |        |
|                                                       |        |
| 0 0 0 1 0                                             |        |
| 0 0 0 0 0                                             |        |

## Notes

Notes

# Matrix elements assignment

Eugeniy Mikhailov (W&M)

| >>          | Mz(2,4)=1              | olo         | 2nd row,    | 4th         | column |            |        |
|-------------|------------------------|-------------|-------------|-------------|--------|------------|--------|
| Mz          | =                      |             |             |             |        |            |        |
| 0<br>0<br>0 | 0<br>0<br>0            | 0<br>0<br>0 | 0<br>1<br>0 | 0<br>0<br>0 |        |            |        |
|             | Mz(3,5)=4              | olo         | 3rd row,    | 5th         | column |            |        |
| Mz          |                        |             |             |             |        |            |        |
| 0           | 0                      | 0           | 0           | 0           |        |            |        |
| 0           | 0                      | 0           | 1           | 0           |        |            |        |
| 0           | 0                      | 0           | 0           | 4           |        |            |        |
|             |                        |             |             |             | 4      |            | ୬୯୯    |
| E           | Eugeniy Mikhailov (W&N | I)          | Practi      | cal Compu   | uting  | Lecture 02 | 9 / 25 |

Practical Computing

### Alternative way to assign a matrix

• comma separates column elements

• semicolon separates row elements

| >> | Mz= | = [ |    |    |   |   |  |  |  |  |
|----|-----|-----|----|----|---|---|--|--|--|--|
| Ο, | Ο,  | Ο,  | Ο, | 0; |   |   |  |  |  |  |
| Ο, | Ο,  | Ο,  | 1, | 0; |   |   |  |  |  |  |
| Ο, | Ο,  | Ο,  | Ο, | 4] |   |   |  |  |  |  |
|    |     |     |    |    |   |   |  |  |  |  |
| Mz | =   |     |    |    |   |   |  |  |  |  |
|    |     |     |    |    |   |   |  |  |  |  |
| 0  |     | 0   |    | 0  | 0 | 0 |  |  |  |  |
| 0  |     | 0   |    | 0  | 1 | 0 |  |  |  |  |
| 0  |     | 0   |    | 0  | 0 | 4 |  |  |  |  |

Notice  $\cdots\,$  mark, which means that input continues on the next line

|                         |                     | 10110 | 지수는 지수가 문제 문제 | *) Q (* |
|-------------------------|---------------------|-------|---------------|---------|
| Eugeniy Mikhailov (W&M) | Practical Computing |       | Lecture 02    | 10 / 25 |
| Strength of Matlab      |                     |       |               |         |
|                         |                     |       |               |         |

Native matrix operations

| Mz =      |        |    |   |   |   |
|-----------|--------|----|---|---|---|
|           |        |    |   |   |   |
| 0 0 0 0 0 | >> Mz- | +5 |   |   |   |
| 0 0 0 1 0 | ans =  |    |   |   |   |
| 0 0 0 0 4 | 5      | 5  | 5 | 5 | 5 |
|           | 5      | 5  | 5 | 6 | 5 |
|           | 5      | 5  | 5 | 5 | 9 |

|           |                     | + = > + (10) > + (2) > + (2) > | ₹ •9¢@  |
|-----------|---------------------|--------------------------------|---------|
| lov (W&M) | Practical Computing | Lecture 02                     | 11 / 25 |
| of Matlab |                     |                                |         |

### Native matrix operations

Eugeniy Mikhailov (W&M)

Eugeniy Mikhai

| 5      | 5 | 5 | 5 | 5 |
|--------|---|---|---|---|
| 5      | 5 | 5 | 6 | 5 |
| 5      | 5 | 5 | 5 | 9 |
|        |   |   |   |   |
| >> Mz* | 2 |   |   |   |
| ans =  |   |   |   |   |
| 0      | 0 | 0 | 0 | 0 |
| 0      | 0 | 0 | 2 | 0 |
| 0      | 0 | 0 | 0 | 8 |
|        |   |   |   |   |

0

Lecture 02

### More example on matrices operations

>> Mz+5 ans =

| Mz =      | >> Mz+Mz |   |   |   |   |  |  |
|-----------|----------|---|---|---|---|--|--|
| 0 0 0 0 0 | ans =    |   |   |   |   |  |  |
| 0 0 0 1 0 | 0        | 0 | 0 | 0 | 0 |  |  |
| 0 0 0 0 4 | 0        | 0 | 0 | 2 | 0 |  |  |
|           | 0        | 0 | 0 | 0 | 8 |  |  |

Practical Computing

### Notes

### Notes



### More example on matrices operations

| Mz =      | >> Mz+Mz                                                                    |
|-----------|-----------------------------------------------------------------------------|
| 0 0 0 0 0 | ans =                                                                       |
| 0 0 0 1 0 | 0 0 0 0 0                                                                   |
| 0 0 0 0 4 | 0 0 0 2 0                                                                   |
|           | 0 0 0 8                                                                     |
|           | algebra rules                                                               |
|           | Matrix multiplication according to the linear<br>algebra rules              |
|           | >> Mz*Mz'                                                                   |
|           | ans =                                                                       |
|           | 0 0 0                                                                       |
|           | 0 1 0                                                                       |
|           | 0 0 16                                                                      |
|           | Here $Mz'$ corresponds to transposed matrix Mz, i.e. $Mz'(i, j) = Mz(j, i)$ |
|           | (日)(間)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)                               |

Matrix as a function argument

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

Practical Computing

| Mz =      | >> sin( | Mz) |   |        |         |
|-----------|---------|-----|---|--------|---------|
| 0 0 0 0 0 | ans =   |     |   |        |         |
| 0 0 0 1 0 | 0       | 0   | 0 | 0      | 0       |
| 0 0 0 0 4 | 0       | 0   | 0 | 0.8415 | 0       |
|           | 0       | 0   | 0 | 0      | -0.7568 |

Practical Computing

### Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

•  $m \times 1$  column vector

Eugeniv Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

•  $1 \times m$  just a vector

#### Notes

### Notes

Lecture 02

Lecture 02

Lecture 02

13/25

Notes

### Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- $m \times 1$  column vector
- $1 \times m$  just a vector

Eugeniy Mikhailov (W&M)

To create a vector

>> % use comma to separate column elements >> v=[1, 2, 3, 4, 5, 6, 7, 8] v = 1 2 3 4 5 6 7 8 >> % alternatively you can use spaces >> v=[1 2 3 4 5 6 7 8]; >> % or mix of these two notations (NOT RECOMMENDED) >> v=[1 2 3, 4, 5, 6 7 8] v 3 4 5 6 7 1 2 8  $\partial \rightarrow$ Eugeniy Mikhailov (W&M) Lecture 02 14 / 25

Practical Computing

#### Notes

#### Construction of column vector

| >> vc=[1; 2; 3] |             |              |
|-----------------|-------------|--------------|
| % use semicolon | to separate | row elements |
|                 |             |              |
| VC =            |             |              |
| ve              |             |              |
|                 |             |              |
| T               |             |              |
| 2               |             |              |
| 3               |             |              |
|                 |             |              |

|                                                           |                         | $(\Box \rightarrow (\Box \rightarrow (\Box \rightarrow (\Xi \rightarrow (\Xi \rightarrow (\Box \rightarrow (\Box \rightarrow (\Box \rightarrow $ | 8) - 8 | Д   |
|-----------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| Eugeniy Mikhailov (W&M)                                   | Practical Computing     | Lectu                                                                                                                                            | ure 02 |     |
| Yet one more way                                          | to create matrix        |                                                                                                                                                  |        |     |
| If you have prearrange                                    | d vectors or column vec | tors you can us                                                                                                                                  | e thei | n   |
| >> vc=[1; 2; 3];<br>>> % note that ;<br>>> Mc=[vc, vc, vc | after a statement       | suppresses                                                                                                                                       | outr   | put |

| ~ ~ | 110 | 1,001 | 00, | v C ] |
|-----|-----|-------|-----|-------|
| Мс  | =   |       |     |       |
| 1   |     | 1     | 1   |       |
| 2   |     | 2     | 2   |       |
| 3   |     | 3     | 3   |       |

#### Practical Computing Lecture 02 Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

| >>  | vc=[1;            | 2; 3    | ;       |               |        |           |           |       |         |
|-----|-------------------|---------|---------|---------------|--------|-----------|-----------|-------|---------|
| >>  | % note            | that    | ; after | a sta         | tement | suppr     | esses     | outp  | ut      |
| >>  | Mc=[vc,           | , vc,   | vc]     |               |        |           |           |       |         |
| Мc  | =                 |         |         |               |        |           |           |       |         |
| 1   | 1                 | 1       |         |               |        |           |           |       |         |
| 2   | 2                 | 2       |         |               |        |           |           |       |         |
| 3   | 3                 | 3       |         |               |        |           |           |       |         |
|     |                   |         |         |               |        |           |           |       |         |
| v = | =                 |         |         |               |        |           |           |       |         |
| 1   | 2                 | 3       | 4       | 5             | 6      | 7         | 8         |       |         |
| >>  | Mv = [v;          | 2*v;    | 3*v]    |               |        |           |           |       |         |
| Mv  | =                 |         |         |               |        |           |           |       |         |
| 1   | 2                 | 3       | 4       | 5             | 6      | 7         | 8         |       |         |
| 2   | 4                 | 6       | 8       | 10            | 12     | 14        | 16        |       |         |
| 3   | 6                 | 9       | 12      | 15            | 18     | 21        | 24        |       |         |
|     |                   |         |         |               |        | < 🗆 > < 🗗 | + ≥ > + 3 |       | ୬୯୯     |
|     | Eugeniy Mikhailov | / (W&M) |         | Practical Com | puting |           | Lectu     | re 02 | 16 / 25 |

### Colon (:) operator

Eugeniy Mikhailov (W&M)

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

[ start, start+increment, ... , start+m\*increment]

### where

 $\min(\text{start}, \text{stop}) \leq \text{m*increment} \leq \max(\text{start}, \text{stop})$ 

Notes

#### Notes

16/25



### Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

. د الله

| [  | start, | <pre>start+increment,</pre> | <br>, | <pre>start+m*increment]</pre> |
|----|--------|-----------------------------|-------|-------------------------------|
| wh | ere    |                             |       |                               |

 $\min(\text{start}, \text{stop}) \leq \text{m} \star \text{increment} \leq \max(\text{start}, \text{stop})$ >> v=5:2:11

v = 5 7 9 11

| Eugeniy Mikhailov (W&M)   | Practical Computing                                                  | <ロト < 部ト < 注) < 注) Ecture 02 | ୬୦.୧୦<br>17/25 |
|---------------------------|----------------------------------------------------------------------|------------------------------|----------------|
| Colon (:) operato         | r                                                                    |                              |                |
|                           | emely useful to create<br>art:increment:sto<br>vith following values |                              | œs             |
| [ start, start+i          | ncrement, ,                                                          | start+m*incremer             | ıt]            |
| where                     |                                                                      |                              |                |
| min(start,stop)           | $\leq$ m*increment $\leq$ 1                                          | max(start,stop)              |                |
| >> v=5:2:11               |                                                                      |                              |                |
| v =<br>5 7                | 9 11                                                                 |                              |                |
| It is also possible to ha | ave negative increme                                                 | nt                           |                |
| >> v2=12:-3:1             |                                                                      |                              |                |
| v2 =<br>12 9              | 6 3                                                                  |                              | C.             |
| Eugeniy Mikhailov (W&M)   | Practical Computing                                                  | Lecture 02                   | 17 / 25        |
| Colon (:) operato         | r continued                                                          |                              |                |
|                           | stop in this case inc                                                | rement = 1                   |                |
| >> v1=1:5                 |                                                                      |                              |                |

| v1 | = |  |  |  |
|----|---|--|--|--|

Eugeniy Mikhailov (W&M)

Colon (:) operator continued

1 2 3 4 5

Another form start:stop in this case increment = 1

Lecture 02

18/25

୬୯୯

Practical Computing

| >>  | v1=1:5   |   |   |   |   |  |
|-----|----------|---|---|---|---|--|
| v1  | =        |   |   |   |   |  |
|     | 1        | 2 | 3 | 4 | 5 |  |
| Not | ice that |   |   |   |   |  |
| >>  | v3=5:1   |   |   |   |   |  |
| v3  | =        |   |   |   |   |  |
|     |          |   |   |   |   |  |

Empty matrix: 1-by-0

Produce somewhat unexpected result, since default increment is positive  $\Box \mapsto \neg \Box \to \neg = \Xi$ E> イミ> ミ のへで Lecture 02 18 / 25

### Notes

### Notes

Notes

### Slicing matrices

It is handy to choose a subset (block) from the matrix We have a matrix Mv with size  $3 \times 8$  and we want to choose all elements from columns 2,5,6

| >> 1 | Mv     |        |    |    |    |    |    |  |
|------|--------|--------|----|----|----|----|----|--|
| Mv : | =      |        |    |    |    |    |    |  |
| 1    | 2      | 3      | 4  | 5  | 6  | 7  | 8  |  |
| 2    | 4      | 6      | 8  | 10 | 12 | 14 | 16 |  |
| 3    | 6      | 9      | 12 | 15 | 18 | 21 | 24 |  |
|      |        |        |    |    |    |    |    |  |
| >> 1 | Mv(:,[ | 2,5,6] | )  |    |    |    |    |  |
| ans  | =      |        |    |    |    |    |    |  |
| 2    | 5      | 6      |    |    |    |    |    |  |
| 4    | 10     | 12     |    |    |    |    |    |  |
| 6    | 15     | 18     |    |    |    |    |    |  |
|      |        |        |    |    |    |    |    |  |

The meaning of the : now is choose all. Notice also that we use vector to specify desired columns

| Eugeniy Mikhailov (W&M) | Practical Computing | Lecture 02 19 / 25 |
|-------------------------|---------------------|--------------------|
| Plotting                |                     |                    |

Fiotung

Suppose you have a vector with values of x coordinates and we want to plot sin(x).

```
>> x=linspace(0,2*pi,10)
x =
                                     2.7925
0
     0.6981
               1.3963
                          2.0944
                                                3.4907
4.1888 4.8869
                5.5851
                           6.2832
>> y=sin(x)
У
0
    0.6428
              0.9848
                         0.8660
                                     0.3420
                                               -0.3420
-0.8660 -0.9848 -0.6428 -0.0000 >> plot(x,y,'o') % alternatively plot(x,sin(x),'o')
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
```

Practical Computing

### Saving plots

Eugeniy Mikhailov (W&M)

Now we want to save the figure, use print

>> print('-dpdf', 'sin\_of\_x')

This will generate file *sin\_of\_x.pdf* notice automatic fileextension addition.

#### Notes

### Notes

Notes

Lecture 02

Lecture 02

### Saving plots

Eugeniy Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

Now we want to save the figure, use print

>> print('-dpdf', 'sin\_of\_x')

This will generate file *sin\_of\_x.pdf* notice automatic fileextension addition.

Practical Computing

The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png". . . )

### Saving plots

### Now we want to save the figure, use print

>> print('-dpdf', 'sin\_of\_x')

This will generate file *sin\_of\_x.pdf* notice automatic fileextension addition.

The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png". . . ) To generate 'png' file

>> print('-dpng', '-r100', 'sin\_of\_x')

By default figure size is  $8 \times 6$  inches, the '-r' switch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be  $800 \times 600$  pixels.

|     |   |   | Pet d | 100 |                 |   | _ |
|-----|---|---|-------|-----|-----------------|---|---|
|     |   |   |       |     |                 |   |   |
| -   | ۰ |   |       |     |                 |   | - |
| 14  |   |   |       |     |                 |   | - |
| 12  |   |   |       |     |                 |   |   |
|     |   |   |       |     |                 |   | - |
| 42  |   |   |       |     |                 |   | - |
| 2.4 |   |   | -     |     |                 |   | - |
| 4.6 |   |   |       |     |                 |   | - |
| -12 |   |   |       |     |                 |   |   |
|     |   | 1 | 3     | -   | <b>a</b> :<br>5 | 6 |   |

Lecture 02

Lecture 02

22 / 25

22/25

2

For 3D plots, please see help files for plot3, meshy, surfs, so concerning Learne 02 21/

### Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with  $\ .$ 

| • | •*        |                                |  |
|---|-----------|--------------------------------|--|
|   | >> x=1:3  |                                |  |
|   | x = 1     | 2 3                            |  |
|   | >> x*x %  | will generate an error         |  |
|   | >> x.*x % | equivalent to x.^2 (see below) |  |
|   | ans = 1   | 4 9                            |  |

Special array arithmetic operators

Eugeniv Mikhailov (W&M)

Eugeniy Mikhailov (W&M)

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

Practical Computing

| ۹ | •*        |          |        |       |      |        |  |
|---|-----------|----------|--------|-------|------|--------|--|
|   | >> x=1:3  |          |        |       |      |        |  |
|   | x = 1     | 2 3      |        |       |      |        |  |
|   | >> x*x %  | will ger | nerate | an er | ror  |        |  |
|   | >> x.*x % | equivale | ent to | x.^2  | (see | below) |  |
|   | ans = 1   | 4        | 9      |       |      |        |  |
| • | · ^       |          |        |       |      |        |  |
|   | >> x.^2   |          |        |       |      |        |  |
|   | ans = 1   | 4        | 9      |       |      |        |  |
|   |           |          |        |       |      |        |  |

### Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

Practical Computing

| Eugeniy Mikhailov (W&M)  |                      | Practical Computing |                       | Lecture 02                          | 22 / 25 |
|--------------------------|----------------------|---------------------|-----------------------|-------------------------------------|---------|
|                          |                      |                     | $< \Box > < \Box > <$ | $B \rightarrow + B \rightarrow - B$ | ୬୯୦     |
| >> x./x<br>ans = 1       | 1                    | 1                   |                       |                                     |         |
| • ./                     |                      |                     |                       |                                     |         |
|                          | 4                    | 9                   |                       |                                     |         |
| •.^<br>>> x.^2           |                      |                     |                       |                                     |         |
| x = 1 ::<br>>> x * x % i | will gen<br>equivale |                     | error<br>2 (see belov | ī)                                  |         |
| • .*                     |                      |                     |                       |                                     |         |

#### Notes

### Notes

#### Notes

### Notes

| >>  | m=[1,2, | 3;4,5, | 6;7,8,9] |
|-----|---------|--------|----------|
| m = | =       |        |          |
| 1   | 2       | 3      |          |
| 4   | 5       | 6      |          |

Spe

| 7 | 1      | 8       | 9     |  |  |         |           |          |  |  |  |
|---|--------|---------|-------|--|--|---------|-----------|----------|--|--|--|
|   | Linear | algebra | rules |  |  | Elemer  | nt wise c | peration |  |  |  |
|   | >> m*m |         |       |  |  | >> m.*m |           |          |  |  |  |
|   | ans =  | :       |       |  |  | ans =   |           |          |  |  |  |
|   | 30     | 36      | 42    |  |  | 1       | 4         | 9        |  |  |  |
|   | 66     | 81      | 96    |  |  | 16      | 25        | 36       |  |  |  |
|   | 102    | 126     | 150   |  |  | 49      | 64        | 81       |  |  |  |

|                        |                     | - |  |
|------------------------|---------------------|---|--|
| igeniy Mikhailov (W&M) | Practical Computing |   |  |
| cial array arith       | metic operator      |   |  |

Eugeniy Mikhailov (W&M) Practical Computing Special array arithmetic operator ./

Eugeniy Mikhailov (W&M) Practical Computing

| > | > m=[                | 1,2,3; | 4,5, | 6;7,8,9 | ] |        |      |             |    |      |
|---|----------------------|--------|------|---------|---|--------|------|-------------|----|------|
| n | n =                  |        |      |         |   |        |      |             |    |      |
| 1 | . :                  | 2      | 3    |         |   |        |      |             |    |      |
| 4 | L .                  | 5      | 6    |         |   |        |      |             |    |      |
| 7 | 1                    | 8      | 9    |         |   |        |      |             |    |      |
|   | Linear algebra rules |        |      |         |   | Elemer | nt w | ise operati | on |      |
|   | >> m/                | m % ur | nity | matrix  |   | >> m.  | /m   | %matrix     | of | ones |
|   | ans =                |        |      |         |   | ans =  |      |             |    |      |
|   | 1                    | 0      | 0    |         |   | 1      | 1    | 1           |    |      |
|   | 0                    | 1      | 0    |         |   | 1      | 1    | 1           |    |      |
|   | 0                    | 0      | 1    |         |   | 1      | 1    | 1           |    |      |
|   |                      |        |      |         |   |        |      |             |    |      |

#### 1 1 1 1 1 1 1 1

ø

Lecture 02 25 / 25

Lecture 02

24/25

### Notes

Notes