Introduction to Matlab

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 02

Evenin Mktaliov (WeM)	Lecture
Matlab variable types	

Matlab variable types

- integer
- 123, $-345,0$

Eugeniy Mikhailov (W\&M) Pracical Computing Lecture 02
Matlab variable types

- integer

- 123, $-345,0$
- real or float
- 12.2344
- 5.445454
- engineering notation
- $4.2323 \mathrm{e}-9=4.2323 \times 10^{-9}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
男

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- integer
- 123, -345, 0
- real or float
- 12.2344
- 5.445454
- engineering notation

$$
\text { - } 4.2323 \mathrm{e}-9=4.2323 \times 10^{-9}
$$

- complex
- $i=\sqrt{-1}=1 \mathrm{i}$
- $34.23+21.21 i$
- $(1+1 i) *(1-1 i)=2$

Matlab variable types

- integer
- 123, -345, 0
- real or float
- 12.2344
- 5.445454
- engineering notation - $4.2323 \mathrm{e}-9=4.2323 \times 10^{-9}$
- complex
- $i=\sqrt{-1}=1 \mathrm{i}$
- $34.23+21.21 i$
- $(1+1 i) *(1-1 i)=2$
- strings (put your words inside apostrophes)
- handy for file names and messages
- 'programming is fun'
- s='Williamsburg'

$$
x=1.2+3.4
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
x=1.2+3.4
$$

Despite the look = is not an equality operator.
= is an assignment operator.

\section*{| Euveniy Mkhailov (Wam | Pracieal Compuring | Lectue 02 | $4 / 25$ |
| :--- | :--- | :--- | :--- |
| Assignment operator | | | |}

$$
x=1.2+3.4
$$

Despite the look = is not an equality operator.
= is an assignment operator.
The expression above should be read as

- evaluate expression at the right hand side of equality symbol
- assign the result of the RHS to the variable on the left hand sign
- now variable x holds the value 4.6

We are free to use the value of the variable x in any further expressions

```
>x}+4.
ans}=8.
```


Efficient editing - Tab-completition

Notes

Once you typed some expressions in "Command window"

- type couple of first symbols of variable or function name
- hit tab and you will get
- either fully typed name (if it is uniq)
- or little chart with choices
- use <up> or <down> arrows to choose
- alternatively <Ctrl-p>, <Ctrl-n>
- then hit <enter> to make your choise

Eugeniy Mikhailov (W\&M) Pracical Computing

Help related commands

These are the most important commands

- docsearch word
- will search for word in the help files and show up matched help files
- example: docsearch trigonometry
- help name
- output short help text into "Command window" about
function/method named name
- example: help sin
- doc name
- show a reference page about function/method named name in the help vrowser
- usually has more information compare to help name
- example: doc sin

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Operator Precedence
Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Guess the answer.

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8) \wedge 2
$$

Guess the answer.

$$
-(2 \wedge 4) * 5+(\tan ((p i / 8+p i / 8))) \wedge 2
$$

$\begin{array}{llll}\text { Eugeniy Mikhailov (WeM) Pracical Computing } & \text { Lecture } 02 & 7 / 25\end{array}$
 Operator Precedence

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Guess the answer

```
- (2^4)*5 + (tan( (pi/8+pi/8) ))^2
- (16)*5 + (tan( (pi/4) ))^2
```


Operator Precedence

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Notes
 otes

\qquad
\qquad
\qquad
\qquad
\qquad
$-80+(1)^{\wedge} 2$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Operator Precedence
Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Guess the answer.

```
- (2^4)*5 + (tan( (pi/8+pi/8) ))^2
- (16)*5 + (tan( (pi/4) ))^2
-80+(1)^2 = -80 + 1
```


Operator Precedence

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8) \wedge 2
$$

Guess the answer.

```
- (2^4)*5 + (tan( (pi/8+pi/8) ))^2
- (16)*5 + (tan( (pi/4) ))^2
-80+(1)^2 = - 80 + 1= -79
```


$\begin{array}{llll}\text { Eugeniy Mikhailov (W\&M) } & \text { Pracical Computing } & \text { Lecture } 02 & 7 / 25\end{array}$
 Operator Precedence

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Guess the answer

```
-(2^4)*5 + (tan( (pi/8+pi/8) ))^2
- (16)*5 + (tan( (pi/4) ))^2
    -80 + (1)^2 = -80 + 1= -79
```

Rule of thumb: if not sure use extra parentheses ()

Look at the following Matlab expression

$$
-2^{\wedge} 4 * 5+\tan (p i / 8+p i / 8)^{\wedge} 2
$$

Guess the answer

```
- (2^4)*5 + (tan( (pi/8+pi/8) ))^2
- (16)*5 + (tan( (pi/4) ))^2
    -80+(1)^2 = - 80 + 1= -79
```

Rule of thumb: if not sure use extra parentheses ()

- Read more by executing doc precedence
- or searching for 'precedence' in the help browser.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(1)

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1×1 matrix

 Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1×1 matrix

Let's create a 3×5 matrix (3 rows and 5 columns)

\gg	$\mathrm{Mz}=$ zeros $(3,5)$			
$\mathrm{Mz}=$				
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

This is not the only way, but it is one which make sure that matrix is filled with zeros
Note: it is possible to have more than 2 dimensional arrays.

Eugeniy Mikhailov (W\&M)				cal Computing	Lecture 02	8/25
Matrix elements assignment						
>> Mz $(2,4)=1$ \% 2nd row, 4th column						
$\mathrm{Mz}=$						
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$						
$\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}$						
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$						

| Eugeniy Mikhailov (W8M) Practical Computing | Lecture 02 | $9 / 25$ |
| :--- | :--- | :--- | :--- |
| Matrix | | |

Matrix elements assignment

Notes

\qquad
>> $\mathrm{Mz}(2,4)=1$ \% 2nd row, 4th column
$\mathrm{Mz}=$
0
0

- comma separates column elements
- semicolon separates row elements

$\left.\begin{array}{llll} \gg & M z=[& \ldots & \\ 0, & 0, & 0, & 0, \\ 0 ; & \ldots \\ 0, & 0, & 0, & 1, \\ 0, & 0 ; & \ldots \\ 0, & 0, & 0, & 0, \\ \hline \end{array}\right]$				
0	0	0	0	0
0	0	0	1	0
0	0	0	0	4

Notice ... mark, which means that input continues on the next line

Strength of Matlab	

Native matrix operations

Mz	$=$								
0	0	0	0	0					
0	0	0	1	0		ans	$=$		
0	0	0	0	4	5	5	5	5	5

Strength of Matlab

Native matrix operations

More example on matrices operations

$M z$	$=$			
0	0	0	0	0
0	0	0	1	0
0	0	0	0	4

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More example on matrices operations

Matrix multiplication according to the linear algebra rules

Here $M z^{\prime}$ corresponds to transposed matrix $M z$, i.e. $M z^{\prime}(i, j)=M z(j, i)$

Matrix as a function argument	Matrix as a function argument

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

$M z=$		l							
0	0	0	0	0	ans $=$				
0	0	0	0	0	0	0	0	0	
0	0	0	0	4	0	0	0	0.8415	0
	0	0	0	0	-0.7568				

$\begin{array}{llll}\text { Eugeniy Mikhailov (W\&M) } & \text { Practical Computing } & \text { Lecture } 02 & \text { 13/25 }\end{array}$

Vectors and column vector
A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- $m \times 1$ column vector
- $1 \times m$ just a vector

```
Eugeniy Mikhailov (W&M) Practical Computing Lecture 02 14/25
Vectors and column vector
A special case of the matrix is it has only one dimension.
Such matrices generally called vectors
- \(m \times 1\) column vector
- \(1 \times m\) just a vector
To create a vector
```

```
>> % use comma to separate column elements
```

>> % use comma to separate column elements
>> v}=[1,2,3,4,5,6, 7, 8
>> v}=[1,2,3,4,5,6, 7, 8
v =
v =
1
1
>> % alternatively you can use spaces
>> % alternatively you can use spaces
>> v=[[llllllllll}11 2 3 4 4 5 6 7 7 ;
>> v=[[llllllllll}11 2 3 4 4 5 6 7 7 ;
> % or mix of these two notations (NOT RECOMMENDED)
> % or mix of these two notations (NOT RECOMMENDED)
>> v}=[$$
\begin{array}{llll}{1}&{2}&{3,4,5, 6 7 8}\end{array}
$$
>> v}=[$$
\begin{array}{llll}{1}&{2}&{3,4,5, 6 7 8}\end{array}
$$
v =
v =
1 [lllllll

```
1 [lllllll
```


Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Construction of column vector

```
>> \(\mathrm{vc}=[1 ; 2 ; 3]\)
\% use semicolon to separate row elements
vc =
1
2
3
```


The : operator is extremely useful to create vectors or matrix indexes It usually take form start : increment: stop and creates a vector with following values
[start, start+increment, ... , start+m*increment]
where
min(start,stop) $\leq m * i n c r e m e n t \leq m a x(s t a r t, s t o p)$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes
It usually take form start : increment : stop
and creates a vector with following values
[start, start+increment, ... , start+m*increment]
where
$\min ($ start, stop $) \leq m *$ increment $\leq \max ($ start, stop)
>> $\mathrm{v}=5: 2: 11$
$\mathrm{v}=$
$\begin{array}{llll}5 & 7 & 9 & 1\end{array}$
11

The : operator is extremely useful to create vectors or matrix indexes It usually take form start: increment : stop and creates a vector with following values
[start, start+increment, ... , start+m*increment]

where

$\min ($ start, stop $) \leq m * i n c r e m e n t \leq m a x(s t a r t, s t o p) ~$
>> $\mathrm{v}=5: 2: 11$
$\mathrm{v}=$

It is also possible to have negative increment

Another form start: stop in this case increment $=1$

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Eugeniy Mikhailov (W\&M) Pracical Computing Lecture 0218 18/25
Colon (:) operator continued
Another form start: stop in this case increment $=1$

v1 =				
1	2	3	4	5

Notice that

\gg	v3 $=5: 1$
v3	$=$
	Empty matrix: 1 -by- 0

Produce somewhat unexpected result, since default increment is positive

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slicing matrices

It is handy to choose a subset (block) from the matrix
We have a matrix Mv with size 3×8 and we want to choose all elements from columns 2,5,6

>> Mv							
	$=$						
1	2	3	4	5	6	7	8
2	4	6	8	10	12	14	16
3	6	9	12	15	18	21	24
>> Mv(:, [2,5,6])							
ans $=$							
2	5	6					
4	10	12					
6	15	18					

The meaning of the : now is choose all. Notice also that we use vector to specify desired columns

Plotting

Suppose you have a vector with values of x coordinates and we want to plot $\sin (x)$.

```
>> x=linspace(0,2*pi,10)
x =
\begin{tabular}{llllll}
0 & 0.6981 & 1.3963 & 2.0944 & 2.7925 & 3.4907
\end{tabular}
4.1888 4.8869 5.5851 6.2832
>> y=sin(x)
y =
0 0.6428 0.9848 0.8660 0.3420 -0.3420
-0.8660 -0.9848 -0.6428 -0.0000
>> plot(x,y,'o') % alternatively plot(x,\operatorname{sin}(x),'\mp@subsup{O}{}{\prime})
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
```


Saving plots

Now we want to save the figure, use print
>> print('-dpdf', 'sin_of_x')
This will generate file sin_of_x.pdf notice automatic fileextension addition.

Eugeniy Mikhailov (W\&M)
 Saving plots

Now we want to save the figure, use print
>> print ('-dpdf', 'sin_of_x')
This will generate file sin_of_x.pdf notice automatic fileextension addition.
The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png"...)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Saving plots

Now we want to save the figure, use print
Notes
>> print ('-dpdf', 'sin_of_x')
This will generate file sin_of_x.pdf notice automatic fileextension addition.
The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png". . .
To generate 'png' file
>> print('-dpng', '-r100', 'sin_of_x')

By default figure size is 8×6 inches, the ' -r ' switch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be 800×600 pixels.

For 3D plots, please see help files for plot3, meshy, $\operatorname{surf}_{\bar{\Xi}}$

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .

- .*

$$
\begin{aligned}
& \text { >> } x=1: 3 \\
& x=1 \quad 2 \quad 3 \\
& \text { >> } x * x \text { \% will generate an error } \\
& \text { >> } x . * x \text { \% equivalent to } x . \wedge 2 \text { (see below) } \\
& \text { ans }=1 \quad 4 \quad 9
\end{aligned}
$$

Special array arithmetic operators

```
There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .
- . *
```

```
>> x=1:3
```

>> x=1:3
$x=1 \quad 2 \quad 3$
>> x*x % will generate an error
>> x.*x % equivalent to x.^2 (see below)
ans = 1 4 9

- .

```
```

>> x.^2

```
>> x.^2
    ans = 1 4 9
```

 ans = 1 4 9
    ```

\section*{Special array arithmetic operators}
There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules), they start with .
- . *
> x=1
> x=1
x = 1 2 3
x = 1 2 3
>> x*x % will generate an error
>> x*x % will generate an error
>> x.*x % equivalent to x.^2 (see below)
>> x.*x % equivalent to x.^2 (see below)
ans = 1 4
ans = 1 4
- .
>> \(\mathrm{x} . \wedge^{\wedge} 2\)
ans \(=1\)
-. /
>> \(\mathrm{x} . / \mathrm{x}\) ans = \(1 \quad 1 \quad 1\)

\section*{Notes}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Notes}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{>> \(m=[1,2,3 ; 4,5,6 ; 7,8,9]\)} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{m}=\)} \\
\hline 1 & 2 & 3 & & & \\
\hline 4 & 5 & 6 & & & \\
\hline 7 & 8 & 9 & & & \\
\hline \multicolumn{3}{|l|}{Linear algebra rules} & \multicolumn{3}{|l|}{Element wise operation} \\
\hline \multicolumn{3}{|l|}{} & \multicolumn{3}{|l|}{>> m.*m} \\
\hline \multicolumn{3}{|l|}{\[
\text { ans }=
\]} & \multicolumn{3}{|l|}{ans =} \\
\hline 30 & 36 & 42 & 1 & 4 & 9 \\
\hline 66 & 81 & 96 & 16 & 25 & 36 \\
\hline 102 & 126 & 150 & 49 & 64 & 81 \\
\hline
\end{tabular}


\section*{Notes}


\section*{Notes}```

