Fractals

Eugeniy E. Mikhailov
The College of William \& Mary

Lecture 28

Dimension definition

Let's take a square.
What is its dimension?

$L_{1}=L_{0}$
$N_{1}=1=1^{2}$

$L_{2}=L_{0} / 2$
$N_{2}=4=2^{2}$

$L_{3}=L_{0} / 3$
$N_{3}=9=3^{2}$

Let's define scale as $s_{n}=L_{0} / L_{n}$ so both N_{n} and s_{n} grow with n

Dimension

For square

$$
D=\lim _{n \rightarrow \infty} \frac{\log n^{2}}{\log n}=2
$$

Fractional dimension object - fractal

What about this figure:
Sierpinski triangle
What is its dimension?

$\begin{aligned} L_{1} & =L_{0} / 2=L_{0} / 2^{2} & L_{2} & =L_{0} / 4=L_{0} / 2^{2}\end{aligned} \quad L_{3}=L_{0} / 8=L_{0} / 2^{3}$.

Dimension

$$
D=\lim _{n \rightarrow \infty} \frac{\log N_{n}}{\log s_{n}}
$$

For square

$D=\lim _{n \rightarrow \infty} \frac{\log n^{3}}{\log n^{2}}=\frac{\log 3}{\log 2}=1.585$

Fractional dimension object - fractal
What about this figure:
Sierpinski triangle
What is its dimension?

$L_{1}=L_{0} / 2=L_{0} / 2^{2} \quad L_{2}=L_{0} / 4=L_{0} / 2^{2} \quad L_{3}=L_{0} / 8=L_{0} / 2^{3}$
$N_{1}=3=3^{2} \quad N_{2}=9=3^{2} \quad N_{3}=27=3^{3}$

Dimension
 $$
D=\lim _{n \rightarrow \infty} \frac{\log N_{n}}{\log s_{n}}
$$

For square

$$
D=\lim _{n \rightarrow \infty} \frac{\log n^{3}}{\log n^{2}}=\frac{\log 3}{\log 2}=1.585
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chaos to order: fractional division - fractal
(1) Choose 3 vertexes for a triangle
(2) Choose random point inside the triangle
(3) Choose a vertex at random
(- Mark a point half-way between known point and the chosen vertex
(5) Replace coordinates of old point with this one
(6) repeat from step 3

Generate a new point from the old one

$$
\binom{x}{y}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}+\binom{e}{f}
$$

Old point could be

- translated
- scaled
- rotated

Example the Barnsley fern

Box counting algorithm
Length of the coast line

$$
L_{\text {tot }}=L_{n} N_{n}
$$

Recall that

$$
\begin{aligned}
L_{n} & =L_{0} / s_{n} \\
D & ==\log (N) / \log (s)
\end{aligned}
$$

then $N=s^{D}$

$$
L_{\text {tot }}=\frac{L_{0}}{s} s^{D}=L_{0} s^{D-1}
$$

If $D>1 L_{\text {tot }}=\infty$ with the scale
($s_{n} \sim 1 / L_{n}$) grows with smaller and smaller box

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

