Fractals

Lecture 28

4/7

Notes

Notes

Notes

Notes

Chaos to order: fractional division - fractal

Notes

Notes

- Choose 3 vertexes for a triangle
- Choose random point inside the triangle
- Choose a vertex at random
- Mark a point half-way between known point and the chosen vertex
- Replace coordinates of old point with this one
- repeat from step 3

scaled

rotated

Example the Barnsley fern

Coastline length problem

Box counting algorithm Length of the coast line

 $L_{tot} = L_n N_n$

Recall that

$$L_n = L_0/s_n$$

$$D = -\log(N)/\log(s)$$

then
$$N = s^D$$

Eugeniy Mikhailov (W&M)

$$L_{tot} = \frac{L_0}{s} s^D = L_0 s^{D-1}$$

If D > 1 $L_{tot} = \infty$ with the scale $(s_n \sim 1/L_n)$ grows with smaller and smaller box

Lecture 28

Notes

Notes