Fourier transform

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 24

Fourier series

Any periodic single value function

$$
y(t)=y(t+T)
$$

with finite number of discontinues can be presented as

$$
y(t)=\frac{a_{0}}{2}+\sum_{1}^{\infty}\left(a_{n} \cos \left(n \omega_{1} t\right)+b_{n} \sin \left(n \omega_{1} t\right)\right)
$$

T period
ω_{1} fundamental frequency $2 \pi / T$

$$
\binom{a_{n}}{b_{n}}=\frac{2}{T} \int_{0}^{T} d t\binom{\cos \left(n \omega_{1} t\right)}{\sin \left(n \omega_{1} t\right)} y(t)
$$

Fourier series example: $|t|$

$$
y(t)=|t|, \quad-p i<t<p i
$$

Since function is even all $b_{n}=0$

$$
\begin{cases}a_{0}=\pi, & \\ a_{n}=0, & n \text { is even } \\ a_{n}=-\frac{4}{\pi n^{2}}, & n \text { is odd }\end{cases}
$$

Fourier series example: step function

$$
\begin{cases}0, & -\pi<x<0, \\ 1, & 0<x<\pi\end{cases}
$$

Since function is odd all $a_{n}=0$ except $a_{0}=1$

$$
\begin{cases}b_{n}=0, & n \text { is even } \\ b_{n}=\frac{2}{\pi n}, & n \text { is odd }\end{cases}
$$

Complex representation

Recall that

$$
\exp (i \omega t)=\cos (\omega t)+i \sin (\omega t)
$$

It can be shown that

$$
\begin{aligned}
& y(t)= \sum_{n=-\infty}^{\infty} c_{n} \exp \left(i n \omega_{1} t\right) \\
& c_{n}= \frac{1}{2 \pi T} \int_{0}^{T} y(t) \exp \left(-i \omega_{1} n t\right) d t \\
& a_{n}=c_{n}+c_{-n} \\
& b_{n}=i\left(c_{n}-c_{-n}\right)
\end{aligned}
$$

What to do if function is not periodic?

- $T \rightarrow \infty$
- $\sum \rightarrow \int$
- discrete spectrum \rightarrow continuous spectrum
- $c_{n} \rightarrow c_{\omega}$

$$
\begin{aligned}
y(t) & =\frac{1}{\sqrt{2 \pi T}} \int_{-\infty}^{\infty} c_{\omega} \exp (i \omega t) \\
c_{\omega} & =\frac{1}{\sqrt{2 \pi T}} \int_{-\infty}^{\infty} y(t) \exp (-i \omega t) d t
\end{aligned}
$$

Required: $\int_{-\infty}^{\infty} d t y(t)$ exist and finite notice: rescaling of c_{ω} compared to c_{n} by extra $\sqrt{2 \pi T}$

Discrete Fourier transform (DFT)

Data points are coming from the apparatus, so in reality we cannot have

- infinitively large interval
- infinite amount of points to calculate true integral Assuming that $y(t)$ has a period T and we took N equidistant points such that

$$
\begin{aligned}
h & =\frac{T}{N} \text { sampling rate } \\
\omega_{1} & =\frac{2 \pi}{T}=\frac{1}{N h} \\
t_{i} & =h \times i \\
y\left(t_{i+N}\right) & =y\left(t_{i}\right) \text { periodicity condition } \\
y_{i} & =y\left(t_{i}\right) \text { shortcut notation } \\
y_{1}, y_{2}, y_{3}, \cdots, y_{N} & \text { data set }
\end{aligned}
$$

We replace integral in Fourier series with the sum

DFT

$$
\begin{aligned}
y_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} c_{n} \exp \left(i \frac{2 \pi(k-1) n}{N}\right) \text { inverse Fourier transform } \\
c_{n} & =\sum_{k=1}^{N} y_{k} \exp \left(-i \frac{2 \pi(k-1) n}{N}\right) \text { Fourier transform } \\
n & =0,1,2, \cdots, N-1
\end{aligned}
$$

Confusion keep increasing: where are the negative coefficients c_{-n} ? In DFT they moved to the right end of the c_{n} vector :

$$
c_{-n}=c_{N-n}
$$

Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points $\left(y_{k}\right)$
- c=fft (y) Fourier transform
- $y=i f f t$ (c) inverse Fourier transform

Notice that fft does not normalize by N so to get Fourier series c_{n} you need to calculate $\mathrm{fft}(\mathrm{y}) / \mathrm{N}$. However y = ifft(fft(y)) Notice one more point of confusion: Matlab does not have index=0, so actual $c_{n}=c_{\text {matab fft }}(n-1)$, so $c_{0}=c_{\text {matlab fft }}(1)$

