Fourier transform

Eugeniy E. Mikhailov

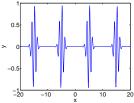
The College of William & Mary

Lecture 24

Any periodic single value function

$$y(t)=y(t+T)$$

with finite number of discontinues can be presented as



$$y(t) = \frac{a_0}{2} + \sum_{1}^{\infty} \left(a_n \cos(n\omega_1 t) + b_n \sin(n\omega_1 t) \right)$$

T period

 ω_1 fundamental frequency $2\pi/T$

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{2}{T} \int_0^T dt \begin{pmatrix} \cos(n\omega_1 t) \\ \sin(n\omega_1 t) \end{pmatrix} y(t)$$

Eugeniy Mikhailov (W&M)

Practical Computing

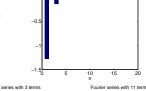
きょくきょ き もくら

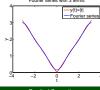
Notes

Fourier series example: |t|

Since function is even all $b_n = 0$

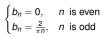
$$egin{cases} a_0=\pi, & & & & \ a_n=0, & n & ext{is even} \ a_n=-rac{4}{\pi n^2}, & n & ext{is odd} \end{cases}$$

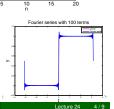




Fourier series example: step function

$$\begin{cases} 0, & -\pi < x < 0, \\ 1, & 0 < x < \pi \end{cases}$$
 Since function is odd all $a_n = 0$ except $a_0 = 1$





-			
Notes			
140100			

Notes			

Complex representation

Recall that

$$\exp(i\omega t) = \cos(\omega t) + i\sin(\omega t)$$

It can be shown that

$$y(t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_1 t)$$

$$c_n = \frac{1}{2\pi T} \int_0^T y(t) \exp(-i\omega_1 nt) dt$$

$$a_n = c_n + c_{-n}$$

$$b_n = i(c_n - c_{-n})$$

←□ → ←□ → ← ≥ → ← ≥ → ○

Eugeniy Mikhailov (W&M)

Practical Computin

Lecture 24

What to do if function is not periodic?

- $T \to \infty$
- $\sum \rightarrow \int$
- discrete spectrum → continuous spectrum
 - \bullet $C_n \rightarrow C_n$

$$y(t) = \frac{1}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} c_{\omega} \exp(i\omega t)$$

$$c_{\omega} = \frac{1}{\sqrt{2\pi T}} \int_{-\infty}^{\infty} y(t) \exp(-i\omega t) dt$$

Required: $\int_{-\infty}^{\infty} dt \ y(t)$ exist and finite notice: rescaling of c_{ω} compared to c_{η} by extra $\sqrt{2\pi T}$

Eugeniy Mikhailov (W&M)

Practical Comput

cal Computing Lecture 2

Discrete Fourier transform (DFT)

Data points are coming from the apparatus, so in reality we cannot have

- infinitively large interval
- infinite amount of points to calculate true integral

Assuming that y(t) has a period T and we took N equidistant points such that

$$h=rac{T}{N}$$
 sampling rate $\omega_1=rac{2\pi}{T}=rac{1}{Nh}$ $t_i=h imes i$ $y(t_{i+N})=y(t_i)$ periodicity condition $y_i=y(t_i)$ shortcut notation y_1,y_2,y_3,\cdots,y_N data set

We replace integral in Fourier series with the sum, The sum, The sum of the s

Eugeniy Mikhailov (W&M)

DFT

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} c_n \exp(i\frac{2\pi(k-1)n}{N}) \text{ inverse Fourier transform}$$

$$c_n = \sum_{k=1}^{N} y_k \exp(-i\frac{2\pi(k-1)n}{N}) \text{ Fourier transform}$$

Confusion keep increasing: where are the negative coefficients c_{-n} ? In DFT they moved to the right end of the c_n vector :

$$c_{-n}=c_{N-n}$$

4 D > 4 B > 4 E > 4 E > E 990

eniy Mikhailov (W&M) Practical Com

cal Computing

Lecture 24

Notes Notes Notes

Notes

Fast Fourier transform (FFT)

Fast numerical realization of DFT is FFT. This is just smart way to do DFT. Matlab has one built in

- y is a matlab vector of data points (y_k)
- c=fft (y) Fourier transform
- y=ifft (c) inverse Fourier transform

Notice that fft does not normalize by N so to get Fourier series c_n you need to calculate fft (y) /N.

However y = ifft(fft(y))

Notice one more point of confusion: Matlab does not have index=0, so actual $c_n = c_{matlab\ fft}(n-1)$, so $c_0 = c_{matlab\ fft}(1)$

4 D > 4 B > 4 E > 4 E > E +990

Eugeniy Mikhailov (W&M) Practical Computing Lecture 24 9 / 9

Notes	
Notes	
Notes	
Notes	
Notes	
Notes	