System of linear algebraic equations

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 22

Mobile problem

Suppose someone provided us with 6 weights and 3 rods. We need to calculate the positions of suspension points.

If system in equilibrium torque must be zero at any pivot point

$$
\begin{array}{r}
w_{1} x_{1}-\left(w_{2}+w_{3}+w_{4}+w_{5}+w_{6}\right) x_{2}=0 \\
w_{3} x_{3}-\left(w_{4}+w_{5}+w_{6}\right) x_{4}=0 \\
w_{5} x_{5}-w_{6} x_{6}=0
\end{array}
$$

We need 3 more equation. Let's fix length of the rods

$$
\begin{aligned}
& x_{1}+x_{2}=L_{12} \\
& x_{3}+x_{4}=L_{34} \\
& x_{5}+x_{6}=L_{56}
\end{aligned}
$$

Mobile problem continued

Let's define $w_{26}=w_{2}+w_{3}+w_{4}+w_{5}+w_{6}$ and $w_{46}=w_{4}+w_{5}+w_{6}$

$$
\begin{aligned}
w_{1} x_{1}-w_{26} x_{2} & =0 \\
w_{3} x_{3}-w_{46} x_{4} & =0 \\
w_{5} x_{5}-w_{6} x_{6} & =0 \\
x_{1}+x_{2} & =L_{12} \\
x_{3}+x_{4} & =L_{34} \\
x_{5}+x_{6} & =L_{56}
\end{aligned}
$$

$$
\sum_{j} A_{i j} x_{j}=B_{i} \rightarrow \mathbf{A x}=\mathbf{B}
$$

Matlab has a lot of built in functions to solve problem of this form

$$
\left(\begin{array}{cccccc}
w_{1} & -w_{26} & 0 & 0 & 0 & 0 \\
0 & 0 & w_{3} & -w_{46} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{5} & -w_{6} \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
L_{12} \\
L_{34} \\
L_{56}
\end{array}\right)
$$

Inverse matrix method

$$
\mathbf{A x}=\mathbf{B}
$$

$$
\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}^{-1} \mathbf{B}, \quad \operatorname{det}(\mathbf{A}) \neq 0
$$

Analytical solution

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{B}
$$

Matlab first way (not the fastest)

$$
\mathbf{x}=\operatorname{inv}(\mathbf{A}) * \mathbf{B}
$$

Matlab second way (recommended)

$$
\mathbf{x}=\mathbf{A} \backslash \mathbf{B}
$$

Recall the mobile problem

If $w_{1}=20, w_{2}=5, w_{3}=3, w_{4}=7, w_{5}=2, w_{6}=3, L_{12}=2, L_{34}=1$, and $L_{56}=3$, then $w_{26}=20$ and $w_{46}=12$.

$$
\left(\begin{array}{cccccc}
20 & -20 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & -12 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & -3 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
2 \\
1 \\
3
\end{array}\right)
$$

Matlab mobile solution

$$
\begin{aligned}
& \mathrm{x}= \\
& 1.0000 \\
& 1.0000 \\
& 0.8000 \\
& 0.2000 \\
& 1.8000 \\
& 1.2000
\end{aligned}
$$

Check

When do and when not to do inverse matrix

Solutions based on Inverse matrix calculations involve extra (unnecessary for solution) steps and thus are slower

```
>> A=rand(4000);
>> B=rand (4000,1);
>> tic; x=inv(A)*B; toc
Elapsed time is 54.831124 seconds.
>> tic; x=A\B; toc
Elapsed time is 19.822778 seconds.
```

However it is handy to calculate inverse matrix in advance if you solve $\mathbf{A x}=\mathbf{B}$ for different \mathbf{B} with the same \mathbf{A}.

```
>> tic; Ainv=inv(A); toc
Elapsed time is 58.304244 seconds.
>> B1=rand(4000,1); tic; x1=Ainv*B1; toc
Elapsed time is 0.048547 seconds.
>> B2=rand(4000,1); tic; x2=Ainv*B2; toc
Elapsed time is 0.048315 seconds.
```

