Notes

System of linear algebraic equations

Eugeniy E. Mikhailov

Lecture 22

Eugeniy Mikhailov (W&M) Practical Computing
Mobile problem

Suppose someone provided us with 6 weights and 3 rods. We need to calculate the positions of suspension points.

If system in equilibrium torque must be zero at any pivot point

 $w_1 x_1 - (w_2 + w_3 + w_4 + w_5 + w_6) x_2 = 0$ $w_3 x_3 - (w_4 + w_5 + w_6) x_4 = 0$ $w_5 x_5 - w_6 x_6 = 0$ (w_1)

 $\begin{bmatrix} x_1 \\ w_2 \\ w_3 \\ w_5 \\ w_5 \\ w_5 \end{bmatrix} \begin{bmatrix} x_4 \\ w_4 \\ w_5 \\ w_6 \\ w_6 \end{bmatrix}$

Lecture 22

Lecture 22

Lecture 22

 $\begin{array}{rcl} x_1 + x_2 &=& L_{12} \\ x_3 + x_4 &=& L_{34} \end{array}$

 $x_5 + x_6 = L_{56}$

We need 3 more equation. Let's fix length of

Mobile problem continued

Eugeniv Mikhailov (W&M)

the rods

Let's define $w_{26} = w_2 + w_3 + w_4 + w_5 + w_6$ and $w_{46} = w_4 + w_5 + w_6$

Practical Computing

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<i>w</i> ₃ <i>x</i> ₃	$- W_{26}X_2$ $- W_{46}X_4$ $5 - W_6X_6$	=			$\sum_j A_{ij} x_j = B_i o \mathbf{A} \mathbf{x} = \mathbf{B}$
$ \begin{pmatrix} 0 & 0 & w_3 & -w_{46} & 0 & 0 \\ 0 & 0 & 0 & 0 & w_5 & -w_6 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ L_{12} \\ L_{34} \end{pmatrix} $		$x_1 + x_2$ $x_3 + x_4$	=	L ₁₂ L ₃₄		functions to solve problem of
$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_6 \end{pmatrix} \begin{pmatrix} L_{56} \end{pmatrix}$	$ \begin{pmatrix} w_1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} $	0 0 1	<i>w</i> ₃ 0	0	w ₅ 0	$ \begin{bmatrix} -w_6 \\ 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ L_{12} \\ L_{34} \\ L_{56} \end{bmatrix} $

Inverse matrix method

Eugeniy Mikhailov (W&M)

 $\mathbf{A}\mathbf{x} = \mathbf{B}$

Practical Computing

 $\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{-1}\boldsymbol{B},\ \text{det}\left(\boldsymbol{A}\right)\neq\boldsymbol{0}$

Analytical solution						
	$\mathbf{x} = \mathbf{A}^{-1}\mathbf{B}$					
Matlab first way (not the fastest)						
	$\mathbf{x} = \operatorname{inv}(\mathbf{A}) * \mathbf{B}$					
Matlab second way (recommended)						
$\mathbf{x} = \mathbf{A} ackslash \mathbf{B}$						
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 22 4 / 7				

Notes

If $w_1 = 20, w_2 = 5, w_3 = 3, w_4 = 7, w_5 = 2, w_6 = 3, L_{12} = 2, L_{34} = 1,$ and $L_{56} = 3$, then $w_{26} = 20$ and $w_{46} = 12$.

/20	-20	0	0	0	0 \	$\langle x_1 \rangle$		/0\
0	0	3	-12	0	0	x ₂		0
0	0	0	0	2	-3	<i>x</i> ₃		0
1	1	0	0	0	0	X ₄	=	2
0	0	1	1	0	0	<i>x</i> ₅		1
0/	0	0	0	1	1/	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix}$		\3/

		$(\Box) \land (\overline{B}) \land (\Xi) \land (\Xi) \land (\Xi) \land (\Xi) \land (O)$				
Eugeniy Mikhailov (W&M)	Practical Computing	Lecture 22 5 / 7				
Matlab mobile solution						
A=[х =				
20, -20, 0, 0,	0, 0;	1.0000				
0, 0, 3, -12,	0, 0;	1.0000				
0, 0, 0, 0,	2, -3;	0.8000				
1, 1, 0, 0,	0, 0;	0.2000				
0, 0, 1, 1,	0, 0;	1.8000				
0, 0, 0, 0,	1, 1;	1.2000				
] B= [0; 0; 0; 2; 1	1; 3]	Check				
% 1st method		>> A*x-B				
x=inv(A)*B	1.0e-15 *					
% 2nd method		0				
x=A\B		0				
		0				
		0				
		0.2220				

Practical Computing

When do and when not to do inverse matrix

Solutions based on Inverse matrix calculations involve extra (unnecessary for solution) steps and thus are slower

>> A=rand(4000); >> B=rand(4000,1); >> tic; x=inv(A)*B; toc Elapsed time is 54.831124 seconds. >> tic; x=A\B; toc Elapsed time is 19.822778 seconds.

Eugeniv Mikhailov (W&M)

However it is handy to calculate inverse matrix in advance if you solve Ax = B for different B with the same A.

```
>> tic; Ainv=inv(A); toc
Elapsed time is 58.304244 seconds.
>> B1=rand(4000,1); tic; x1=Ainv*B1; toc
Elapsed time is 0.048547 seconds.
>> B2=rand(4000,1); tic; x2=Ainv*B2; toc
Elapsed time is 0.048315 seconds.
 Eugeniy Mikhailov (W&M)
                       Practical Computing
```

Notes

Notes

Notes

0

Lecture 22

Lecture 22 7 / 7

Notes