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Traveling salesman problem

This problem has a lot of connection to the real life. Every time you ask
your GPS to find a route, the GPS unit has to solve this problem.
Layout of traces on a printed circuits board is essentially the same
problem as well.

Suppose you have N cities (with given coordinates) to visit
Salesman start in the city 1 and need to be in the city N at the end
of the route
Find the shortest route so salesman visits every city only once
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Note that combinatorial
complexity of this problem

(N − 2)!

since ends points are fixed.
This grows very fast with N.
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Possible solutions

Brute force
Try every possible combination of cities and choose the best one
Will work for the modest route with N ≤ 10 or may be slightly more

Metropolis algorithm
try routes probabilistically and anneal to the local optimum

This is reasonably fast
but does not guaranteed the best/shortest route

reasonable idea for generating a new route is to randomly swap 2
cities in the old route
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Data reduction

Typical modern experiment generates Mega bytes or even Terra
bytes of data.

there is no way for a human to comprehend such enormous
amount of data

we need to post-process it and extract some important parameters
alternatively we want to check how our models reflect reality
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Fitting

Someone measured bunch of experimental points y as a function of
independent variable x . We want to extract model parameters ~p via
fitting of the model function f (x , ~p).

Remark: in general x and y could be vectors i.e. multi-dimensional, for
example ~x has 2 coordinates: speed of the car and the weight of the
load, and y would have the fuel consumption and the engine
temperature.

For simplicity we will focus on the one dimensional case for x and y

we are given experimental points xi → yi

our model function xi → yfi = f (xi , ~p)
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Goodness of the fit

First we need to define some way to
estimate goodness of the fit.

Very common is to use the sum of the
squares of the fit deviations from the
experiment data points.

χ2 =
∑

i

(yi − yfi )
2 x

y
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y
i

y
f i

Differences of (yi − yfi ) are called residuals

For a given x , y and f the goodness of the fit χ2 depends only on
parameters of the model/fit function ~p

So our job is simple, minimize χ2 using any suitable algorithm. Thus
find optimal ~p. So called the least square fit.
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Good fit should have the following properties

residuals should be randomly scattered around 0
i.e. no visible trends of residuals vs x

RMS residual =
√

1
N

∑N
i (yi − yfi )

2 should be in order of the ∆y
(experimental uncertainty for y )

For practical realization of the fitting algorithm have a look at the
’fitter.m’ file posted at the class web page. See also
’fitter_usage_example.m’

Eugeniy Mikhailov (W&M) Practical Computing Lecture 18 7 / 7


	Traveling salesman problem
	Data reduction

