
Combinatorial optimization

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 16

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 1 / 6

Combinatorial optimization problem statement

We still want to optimize (minimize) our multi dimensional merit
function E

Find ~x that minimize E(~x) subject to g(~x) = 0, h(~x) ≤ 0

The only difference values of ~x are discrete. I.e. any component of ~x is
not continues and can take a countable set of different values.

In this case we cannot run our golden search algorithm or anything
else which assumes continuous space for ~x .

Instead we have to find a method to search through discrete sets of all
possible input values.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 2 / 6

Example: Backpack problem

Suppose you have a backpack which has a given size (volume). You
have a set of objects with given volumes and values (for example their
cost).

Our job is to find a such subset of items that still fits in the backpack
and has the maximum combined value.

In simple case we will assume that every items happen only once.
Then our job is to minimize

E(~x) =
∑

valueixi

Subject of the following constrains∑
volumeixi ≤ BackpackSize

Where xi = (0 or 1) i.e. do we take this object or not

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 3 / 6

Brute force optimization

With this approach we will just try all possible combinations of items
and find the best of them.

Notice that if there is N objects we have 2N of all possible
combinations to choose from.

So the size of the problem space and thus probing time grows very
fast.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 4 / 6

Brute force optimization continued

First we need an algorithm which generates all possible permutations
of the items.
The below method goes back to 14th century India. It generates
permutations in the lexicographical order.

1 find the largest index k such that p(k) < p(k + 1).
if no such index exists, the permutation is the last permutation.

2 find the largest index l such that p(k) < p(l).
There is at least one l = k + 1

3 swap a(k) with a(l).
4 reverse the sequence from a(k + 1) up to and including the final

element a(end).
See the complimentary code ’permutation.m’

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 5 / 6

Brute force optimization continued

Then the main algorithm for checking and going through permutations
see ’backpack.m’ listing.
It is deliberately super inefficient with worse case time execution
∼ N × N! � 2N

Sample run

backpack_size=7;
volumes=[2, 5, 1, 3, 3];
values =[10, 12, 23, 45, 4];
[pbest, max_fitted_value] = backpack(backpack_size, volumes, values)

pbest = [1 3 4]
max_fitted_value = 78

Eugeniy Mikhailov (W&M) Practical Computing Lecture 16 6 / 6

	Introduction to the combinatorial problem
	Brute force optimization

