Optimization problem

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 14

Introduction to optimization

Find \vec{x} that minimize $E(\vec{x})$ subject to $g(\vec{x})=0, h(\vec{x}) \leq 0$
\vec{x} design variables
$E(\vec{x})$ merit or objective or fitness or energy function $g(\vec{x})$ and $h(\vec{x})$ constrains
There is no guaranteed way (algorithm) which can find global minimum (optimal) point.
Easy to see that maximization problem is the same as minimization once $E(\vec{x}) \rightarrow-E(\vec{x})$.

Analytical solution of 1D

If we have 1D case and $E(x)$ has analytical derivative, optimization problem can be restated as

Find $f(x)=0$
where $f(x)=d E / d x$
since at maximum or minimum derivative must be zero.
Since we already know how to find the solution of $f(x)=0$ the rest is easy.

Example: wire insulation problem

Consider a metal wire with the radius ' a ', which has the heat generation ' q ', it is covered with rubber insulator of the radius ' r '. Our goal is to find such ' r ' that the wire has the smallest temperature.
Problem taken from "Numerical method in engineering with matlab" by Jaan Kiusalaas.
Temperature of the wire is given by

$$
T=\frac{q}{2 \pi}\left(\frac{\ln (r / a)}{k}+\frac{1}{h r}\right)+T_{\text {ambient }}
$$

where
a is the wire radius in m ,
q is the heat generation in wire in W / m,
k is the thermal conductivity of the isolation in $\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)$,
h is the coefficient of convective heat-transfer in $\mathrm{W} /\left(\mathrm{m}^{2 *} \mathrm{~K}\right)$.

Solution with Matlab built in 1D minimization - fminbnd

```
function T=wire_t(r)
    a=.02; % wire radius in m
    q=40; % heat generation in wire in W/m
    k=0.016; % thermal conductivity of isolation in W/(m*K)
    h=1; % coefficient of convective heat-transfer in W/(m^2*K)
    T_ambient=280; % ambient temperature for far away points (at infinity)
    T=q/(2* pi)*(log(r/a)/k + 1/(h*r)) + T_ambient;
end
```

First, we plot the function in order to bracket.

```
r=linspace(0.001,.05,1000);
T=arrayfun(@wire_t, r);
plot(r,T)
```

Next, we find optimal solution

fminbnd (@wire_t $, 0.001, .05)$ ans $=$ 0.0160	600
	400

Golden section search algorithm

If you have bracketed your solution somehow i.e. found x_{1}, x_{2}, and x_{3} such that $x_{1}<x_{2}<x_{3}$ and $E\left(x_{2}\right)<\min \left(E\left(x_{1}\right), E\left(x_{3}\right)\right)$.
Then $x_{1} \rightarrow a, x_{3} \rightarrow b, h=(b-a)$
(1) assign new $x_{1}=a+R * h$ and $x_{2}=b-R * h$
(2) $E_{1}=E\left(x_{1}\right), E_{2}=E\left(x_{2}\right), E_{a}=E(a), E_{b}=E(b)$
(3) if $h<\varepsilon_{X}$ stop otherwise do steps below
(4) note that for small enough $h: E\left(x_{1}\right)<E(a)$ and $E(x 2)<E(b)$
(5) find new bracket

- if $E\left(x_{1}\right)<E\left(x_{2}\right)$ then $b=x_{2}, E_{b}=E_{2}$ else $a=x_{1}, E_{a}=E_{1}$
(6) $h=(b-a)$ and reuse one of the old points x_{1} or x_{2} with the proper R
- if $E\left(x_{1}\right)<E\left(x_{2}\right)$

$$
\begin{aligned}
& \text { then } x_{2}=x_{1}, E_{2}=E_{1}, x_{1}=a+R * h, E_{1}=E\left(x_{1}\right) \\
& \text { else } x_{1}=x_{2}, E_{1}=E_{2}, x_{2}=b-R * h, E_{2}=E\left(x_{2}\right)
\end{aligned}
$$

(3) go to step 3
R given by the golden section $R=\frac{3-\sqrt{5}}{2} \approx 0.38197$

Derivation of the R value

at first step we have

$$
\begin{aligned}
& x_{1}=a+R * h \\
& x_{2}=b-R * h
\end{aligned}
$$

Suppose that $E\left(x_{1}\right)<E\left(x_{2}\right)$ then $a^{\prime}=a$ and $b^{\prime}=x_{2}$ then for the next bracket we evaluate x_{1}^{\prime} and x_{2}^{\prime}

$$
\begin{aligned}
x_{1}^{\prime} & =a^{\prime}+R * h^{\prime}=a^{\prime}+R *\left(b^{\prime}-a^{\prime}\right) \\
x_{2}^{\prime} & =b^{\prime}-R * h^{\prime}=b^{\prime}-R *\left(b^{\prime}-a^{\prime}\right) \\
& =x_{2}-R *\left(x_{2}-a\right)=b-R * h-R *(b-R * h-a)
\end{aligned}
$$

we would like to reuse on of the previous evaluations of E so we require that $x_{1}=x_{2}^{\prime}$. This leads to equation

$$
R^{2}-3 R+1=0 \text { with } R=\frac{3 \pm \sqrt{5}}{2}
$$

We need to choose minus sign since fraction $R<1$

