
Root finding continued

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 07

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 1 / 9



Secant method

X 1X 2

X 5

X 4

f(x)

xX 3

xi+2 = xi+1 − f (xi+1)
xi+1 − xi

f (xi+1)− f (xi)

Need to provide two starting points x1 and x2.
Secant method converges with m = (1 +

√
5)/2 ≈ 1.618

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 2 / 9



Newton-Raphson method

X 1
X 2

X 4

f(x)

xX 3

xi+1 = xi −
f (xi)

f ′(xi)

Need to provide a starting points x1 and the derivative of the function.
Newton-Raphson method converges quadratically (m = 2).

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 3 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.

Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).

For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.

Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error

There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Numerical derivative of a function

Mathematical definition

f ′(x) = lim
h→0

f (x + h)− f (x)

h

The initial intent is to calculate it at very small h.
Remember about roundoff errors (HW01).
For computers with h small enough f (x + h)− f (x) = 0.
Let’s be smarter. Recall Taylor series expansion

f (x + h) = f (x) +
f ′(x)

1!
h +

f ′′(x)

2!
h2 + · · ·

So we can see

f ′c(x) =
f (x + h)− f (x)

h
= f ′(x)+

f ′′(x)

2
h + · · ·

Here computed approximation and algorithm error There is a range of
optimal h when both the round off and the algorithm errors are small.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 4 / 9



Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f ′c(x) = bxh+bh

So for small x , the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 5 / 9



Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f ′c(x) = bxh+bh

So for small x , the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 5 / 9



Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f ′c(x) = bxh+bh

So for small x , the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 5 / 9



Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f ′c(x) = bxh+bh

So for small x , the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 5 / 9



Derivative via Forward difference

f ′c(x) =
f (x + h)− f (x)

h

Algorithm error

εfd ≈
f ′′(x)

2
h

This is quite bad since error is proportional to h.

Example

f (x) = a + bx2

f ′c(x) = bxh+bh

So for small x , the algorithm error dominate our approximation!

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 5 / 9



Derivative via Central difference

f ′c(x) =
f (x + h)− f (x − h)

2h

Algorithm error

εcd ≈
f ′′′(x)

6
h2

Bonus problem for the homework 03 (5 points)
Plot the log10 of the absolute error of sin(x) derivative at x = π/4
calculated with forward and central difference methods vs the log10 the
h value. See loglog help for ploting with logarithmic axes. The
values of h should cover the range 10−16,10−15,10−14 · · · 10−1,1.
At the low end error will be dominated by round offs and at the higher
by the algorithm error.
The minimum of the absolute error indicates optimal values of h.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 6 / 9



Derivative via Central difference

f ′c(x) =
f (x + h)− f (x − h)

2h

Algorithm error

εcd ≈
f ′′′(x)

6
h2

Bonus problem for the homework 03 (5 points)
Plot the log10 of the absolute error of sin(x) derivative at x = π/4
calculated with forward and central difference methods vs the log10 the
h value. See loglog help for ploting with logarithmic axes. The
values of h should cover the range 10−16,10−15,10−14 · · · 10−1,1.
At the low end error will be dominated by round offs and at the higher
by the algorithm error.
The minimum of the absolute error indicates optimal values of h.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 6 / 9



Ridders method - the variation of false position

Solve f (x) = 0 with linear approximation of the function
g(x) = f (x) exp(hQ)

1 bracket the root between x1 and x2
2 evaluate function in the mid point x3 = (x1 + x2)/2
3 find new approximation for the root

x4 = x3 + sign(f1 − f2)
f3√

f 2
3 − f1f2

(x3 − x1)

where f1 = f (x1), f2 = f (x2), f3 = f (x3)
4 check if x4 satisfies convergence condition
5 re bracket the root using

x4 and f4 = f (x4)
whichever of (x1, x2, x3) is closer to x4 and provides proper bracket.

6 proceed to step 1
Nice parts: x4 is guaranteed to be inside the bracket, convergence of
the algorithm is quadratic m = 2. But it requires evaluation of the f (x)
twice for f3 and f4 thus actually m =

√
2.

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 7 / 9



Root finding algorithm gotchas

Bracketing algorithm are bullet
proof and will always converge,
however false position
algorithm could be slow.

X 1
X 2 X 4

f(x)

x

X 3X 5

Newton-Raphson and secant
algorithm are usually fast but
starting points need to be close
enough to the root.

X 1

X 2

f(x)

xX 3

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 8 / 9



Root finding algorithm gotchas

Bracketing algorithm are bullet
proof and will always converge,
however false position
algorithm could be slow.

X 1
X 2 X 4

f(x)

x

X 3X 5

Newton-Raphson and secant
algorithm are usually fast but
starting points need to be close
enough to the root.

X 1

X 2

f(x)

xX 3

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 8 / 9



Root finding algorithm gotchas

Bracketing algorithm are bullet
proof and will always converge,
however false position
algorithm could be slow.

X 1
X 2 X 4

f(x)

x

X 3X 5

Newton-Raphson and secant
algorithm are usually fast but
starting points need to be close
enough to the root.

X 1

X 2

f(x)

xX 3

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 8 / 9



Root finding algorithms summary

Root bracketing algorithms
bisection
false position
Ridders

Pro
robust i.e. always
converge.

Contra
usually slower
convergence
require initial bracketing

Non bracketing algorithms
Newton-Raphson
secant

Pro
faster
no need to bracket (just
give a reasonable starting
point)

Contra
may not converge

Eugeniy Mikhailov (W&M) Practical Computing Lecture 07 9 / 9


	Secant method
	Newton-Raphson method
	Numerical derivative of a function
	Ridders method
	Root finding algorithms gotchas
	Root finding algorithms summary

