Matrices and plotting.

Eugeniy E. Mikhailov

The College of William \& Mary

Lecture 03

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1×1 matrix

Let's create a 3×5 matrix (3 rows and 5 columns)
>> Mz=zeros $(3,5)$
$\mathrm{Mz}=$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

This is not the only way, but it is one which make sure that matrix is filled with zeros
Note: it is possible to have more than 2 dimensional arrays.

Matrix elements assignment

>> $\mathrm{Mz}(2,4)=1$
$\mathrm{Mz}=$
0
0
0

Alternative way to assign a matrix

Notice ... mark, which means that input continues on the next line

Strength of Matlab

Native matrix operations

$\gg \mathrm{Mz}+5$
ans $=$

5 $\quad 5 \quad$| | | | |
| :--- | :--- | :--- | :--- |
| 5 | 5 | 5 | 5 |
| 5 | 5 | 5 | 6 |

\gg	$\mathrm{Mz} * 2$			
ans $=$				
0	0	0	0	0
0	0	0	2	0
0	0	0	0	8

More example on matrices operations

\gg	$M z+M z$			
ans $=$				
0	0	0	0	0
0	0	0	2	0
0	0	0	0	8

Matrix multiplication according to the linear algebra rules

\gg	$\mathrm{Mz} \star \mathrm{Mz}^{\prime}$	
ans $=$		
0	0	0
0	1	0
0	0	16

Here $M z^{\prime}$ corresponds to transposed matrix Mz, i.e. $M z^{\prime}(i, j)=M z(j, i)$

Matrix as a function argument

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

$\gg \sin (M z)$				
ans $=$				
0	0	0	0	0
0	0	0	0.8415	0
0	0	0	0	-0.7568

Vectors and column vector

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- $m \times 1$ column vector
- $1 \times m$ just a vector

To create a vector

1	2	3	4	5	6	7	8

Column vector

$$
\begin{aligned}
& \text { Construction of column vector } \\
& \gg \mathrm{vC}=[1 ; 2 ; 3] \\
& \mathrm{vc}= \\
& 1 \\
& 2 \\
& 3
\end{aligned}
$$

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them
$\gg \mathrm{VC}=[1 ; 2 ; 3] ;$
\gg
$\mathrm{MC}=[\mathrm{VC}$,
$\mathrm{MC}=$
1

$\mathrm{V}=$							
1	2	3	4	5	6	7	8
$\gg \mathrm{Mv}=\left[\begin{array}{lll}\mathrm{v} ; & 2 * v ; ~ & 3 * v]\end{array}\right.$							
$\mathrm{Mv}=$							
1	2	3	4	5	6	7	8
2	4	6	8	10	12	14	16
3	6	9	12	15	18	21	24

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start : increment: stop and creates a vector with following values

```
    [ start, start+increment, ... , start+m*increment]
```

where start $+\mathrm{m} *$ increment \leq stop
>> $\mathrm{v}=5: 2: 11$
$\mathrm{v}=$

5	7	9	12

It is also possible to have negative increment
>> $\mathrm{v} 2=12:-3: 1$
$\mathrm{v} 2=$

12	9	6	3

Colon (:) operator continued

Another form start: stop in this case increment $=1$

v1 =				
1	2	3	4	5

Notice that
>> $\mathrm{v} 3=5: 1$
$\mathrm{v} 3=$
\quad Empty matrix: 1-by-0
Produce somewhat unexpected result, since default increment is positive

Slicing matrices

It is handy to choose a subset (block) from the matrix We have a matrix Mv with size 3×8 and we want to choose all elements from columns 2,5,6

```
>> Mv
Mv =
\begin{tabular}{rrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\
3 & 6 & 9 & 12 & 15 & 18 & 21 & 24
\end{tabular}
>> Mv(:,[2,5,6])
ans =
2 5 6
4 10}1
6 15 18
```

The meaning of the : now is choose all. Notice also that we use vector to specify desired columns

Plotting

Suppose you have a vector with values of x coordinates and we want to plot $\sin (x)$.

```
>> x=linspace(0,2*pi,10)
x =
0 0.6981 1.3963 2.0944 2.7925 3.4907
4.1888 4.8869 5.5851 6.2832
>> y=sin(x)
y =
0 0.6428 0.9848 0.8660 0.3420 -0.3420
-0.8660 -0.9848 -0.6428 -0.0000
>> plot(x,y,'o') % other way plot(x,sin(x),'o')
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
```


Saving plots

Now we want to save the figure, use print
>> print('-dpdf', 'sin_of_x')
This will generate file sin_of_x.pdf notice automatic fileextension addition.
The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png"...)
To generate 'png' file
>> print('-dpng', '-r100', 'sin_of_x')

By default figure size is 8×6 inches, the ' $-r$ ' switch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be 800×600 pixels.

For 3D plots, please see help files for plot3, mesh, surf

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules)

- . *

```
>> x=1:3
x = 1 2 
>> x*x % will generate an error
>> X.*2
ans=1
4
9
```

- . /

```
>> X./X
ans=1 1
```

$\gg \mathrm{x} \cdot \wedge 2$
ans $=1$
4
9

Special array arithmetic operators continued

```
>>m=[1,2,3;4,5,6;7,8,9]
m =
1 2 3
4 5 6
7 8 9
```

Linear algebra rules

$\gg m * m$		
ans $=$		
30	36	42
66	81	96
102	126	150

Element wise operation

\gg	$m . * m$	
$\mathrm{ans}=$		
1	4	9
16	25	36
49	64	81

Special array arithmetic operator .

1	2	3
4	5	6
7	8	9

Linear algebra rules
$\gg \mathrm{m}^{\wedge} \mathrm{m}$ \% undefined
$\gg m \cdot \wedge m$
ans $=$
ans $=$

1	4	27
256	3125	46656
823543	16777216	387420489

Special array arithmetic operator ./

```
>>m=[1,2,3;4,5,6;7,8,9]
m =
1 2 3
4
7 8 9
```

Linear algebra rules

$\begin{aligned} & \gg \mathrm{m} / \mathrm{m} \\ & \mathrm{ans}= \end{aligned}$		
1	0	0
0	1	0
0	0	1

Element wise operation

$\gg m . / m$		
ans $=$		
1	1	1
1	1	1
1	1	1

