Matrices and plotting.

Eugeniy E. Mikhailov

The College of William & Mary

Lecture 03

Matrices

Recall that Matlab stands for Matrix Laboratory

- So deep inside everything is a matrix (array)
- a number is the case of 1 × 1 matrix

Let's create a 3×5 matrix (3 rows and 5 columns)

>>	Mz=zero	s(3,5)				
Mz	=					
0	0	0	0	0		
0	0	0	0	0		
0	0	0	0	0		

This is not the only way, but it is one which make sure that matrix is filled with zeros Note: it is possible to have more than 2 dimensional arrays.

Matrix elements assignment

>>	Mz(2,4)=1	010	2nd row,	4th	column
Mz	=				
0 0 0	0	0 0 0	0 1 0	0 0 0	
>>	Mz(3,5)=4	010	3rd row,	5th	column
Mz	=				
0 0 0	0 0 0		0 1 0	0 0 4	

>>	Mz=	= [• • •								
0,	Ο,	Ο,	0,	0;							
Ο,	0,	Ο,	1,	0;	• • •						
0,	Ο,	Ο,	Ο,	4]							
Mz	=										
0		0		0		0	0				
0		0		0		1	0				
0		0		0		0	4				

Notice ... mark, which means that input continues on the next line

Strength of Matlab

Native matrix operations

>>	Mz+5					
ans	=					
5	5	5	5	5		
5	5	5	6	5		
5	5	5	5	9		
>>	Mz*2					
ans	=					
0	0	0	0	0		
0	0	0	2	0		
0	0	0	0	8		

>> Mz+Mz									
an	s =								
0	0	0	0	0					
0	0	0	2	0					
0	0	0	0	8					

Matrix multiplication according to the linear algebra rules

>> Mz*N		
ans =		
0	0	0
0	1	0
0	0	16

Here Mz' corresponds to transposed matrix Mz, i.e. Mz'(i,j) = Mz(j,i)

A function can take a matrix as the function argument, it will evaluate the value of the function for each matrix element

>> sin(Mz)				
ans =					
0	0	0	0	0	
0	0	0	0.8415	0	
0	0	0	0	-0.7568	

A special case of the matrix is it has only one dimension. Such matrices generally called vectors

- *m* × 1 column vector
- 1 × m just a vector

To create a vector

Construction of column vector

```
>> vc=[1; 2; 3]
vc =
1
2
3
```

Yet one more way to create matrix

If you have prearranged vectors or column vectors you can use them

>>	vc=[1;	2; 3]	;							
>>	>> Mc=[vc, vc, vc]									
Mc	=									
1	1	1								
2	2	2								
3	3	3								
v =	=									
1	2	3	4	5	6	7	8			
>>	Mv = [v;	2*v;	3*v]							
Mv	=									
1	2	3	4	5	6	7	8			
2	4	6	8	10	12	14	16			
3	6	9	12	15	18	21	24			

Colon (:) operator

The : operator is extremely useful to create vectors or matrix indexes It usually take form start:increment:stop and creates a vector with following values

```
[ start, start+increment, ... , start+m*increment]
```

where start+m*increment \leq stop

```
>> v=5:2:11
v =
5 7 9 12
```

It is also possible to have negative increment

```
>> v2=12:-3:1
v2 =
```

Colon (:) operator continued

Another form start: stop in this case increment = 1

>>	v1=1:5						
v1	=						
	1	2	3	4	5		
Not	tice that						
>>	v3=5:1						
v3	=						
	Empty r	natrix	x: 1-by	-0			

Produce somewhat unexpected result, since default increment is positive

Slicing matrices

It is handy to choose a subset (block) from the matrix We have a matrix Mv with size 3×8 and we want to choose all elements from columns 2,5,6

>>	Mv							
Mv	=							
1	2	3	4	5	6	7	8	
2	4	6	8	10	12	14	16	
3	6	9	12	15	18	21	24	
>>	Mv(:,[2	2,5,6])					
an	s =							
2	5	6						
4	10	12						
6	15	18						

The meaning of the : now is choose all. Notice also that we use vector to specify desired columns

Eugeniy Mikhailov (W&M)

Plotting

Suppose you have a vector with values of x coordinates and we want to plot sin(x).

```
>> x=linspace(0,2*pi,10)
X =
0
 0.6981 1.3963 2.0944 2.7925 3.4907
4.1888 4.8869 5.5851 6.2832
>> y=sin(x)
у =
0
 0.6428 0.9848 0.8660 0.3420 -0.3420
-0.8660 -0.9848 -0.6428 -0.0000
>> plot(x,y,'o') % other way plot(x,sin(x),'o')
>> % every plot MUST have title, x and y labels
>> xlabel('x (radians)')
>> ylabel('sin(x)')
>> title('Plot of sin(x)')
```

Saving plots

Now we want to save the figure, use print

```
>> print('-dpdf', 'sin_of_x')
```

This will generate file *sin_of_x.pdf* notice automatic fileextension addition.

The '-d' switch stands for output format ('pdf', 'ps', 'eps', 'png"...) To generate 'png' file

>> print('-dpng', '-r100', 'sin_of_x')

By default figure size is 8×6 inches, the '-r' switch tells the figure resolution in dpi (dots per inch). In this case it is 100 dpi so resulting image will be 800×600 pixels.

For 3D plots, please see help files for plot3, mesh, surf

Eugeniy Mikhailov (W&M)

Special array arithmetic operators

There are special arithmetic operators which applied to the elements of matrices (disregard linear algebra rules)

• . *

>> x=1:3x = 1 2 3 >> x*x % will generate an error >> x.*2 $ans = 1 \quad 4 \quad 9$ • ./ >> x./x 1 1 ans = 1>> x.^2 9 4 ans = 1

Special array arithmetic operators continued

Linear algebra rules

>> m*m								
ans =								
30	36	42						
66	81	96						
102	126	150						

Element wise operation

>> m.*m										
ans =										
1	4	9								
16	25	36								
49	64	81								

Special array arithmetic operator . ^

>> m=[1,2,3;4,5,6;7,8,9]							
m =							
1	2	3					
4	5	6					
7	8	9					
Linear algebra rules			Element wise o	peration			
>> m^m % undefined			>> m.^m				
			ans =				
			1	4	27		
			256	3125	46656		
			823543	16777216	387420489		

Special array arithmetic operator ./

Linear algebra rules

>> m/m					
ans	=				
1	0	0			
0	1	0			
0	0	1			

Element wise operation

>> m./m							
ans =							
1	1	1					
1	1	1					
1	1	1					