
PHYSICAL REVIEW B 112, 144513 (2025)

Phase diagram of a bilayer superconductor under an in-plane magnetic field
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We study a double layer superconductor in the presence of a parallel magnetic field B by obtaining self-
consistent solutions of the Bogoliubov–de Gennes equations, and also using the Pokrovsky-Talapov model for the
free energy expressed in terms of the relative phase, namely the difference in the phases of the superconducting
order parameters in the two layers. We find that with increasing B a continuous transition occurs from the BCS
state, where the relative phase is constant, into a state which contains stripes of the BCS state separated by
localized vortices in the relative phase. This state is predicted to manifest through oscillations in the amplitude
of the superconducting gap and an alternating pattern of supercurrents. With increasing B, the BCS stripe state
continuously evolves into the Fulde-Ferrell-Larkin-Ovchinnikov state with linearly varying relative phase and a
constant gap amplitude. These predictions apply to superconductivity in bilayer transition-metal-dichalcogenide
systems with Ising spin-orbit coupling, and ought to be testable in a recently studied experimental system.
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I. INTRODUCTION

In a system with time reversal and spatial inversion sym-
metry, Cooper pairs with zero momentum are stabilized, as
assumed in Bardeen-Cooper-Schrieffer (BCS) theory. But if
either of these symmetries is broken, for example the time
reversal symmetry (due to a magnetic field) or spatial inver-
sion symmetry (due to antisymmetric spin-orbit coupling), the
resulting Cooper pairs can have nonzero center of mass mo-
mentum q, producing the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconducting state described by a gap parameter
of the form �(r) = |�(r)|eiq·r [1–4]. Even though the FFLO
state was predicted six decades ago, its realization has been
challenging and it has been reported in very few condensed
matter [5,6] and atomic systems [4,7,8].

Liu considered a bilayer Ising superconductor (SC) in the
presence of a parallel magnetic field using the Ginzburg-
Landau (GL) approach [9]. With increasing magnetic field, a
phase transition was predicted from the BCS state into a state
with the gap function �±(x) = |�|e±iqx, where ± labels two
SC layers. As |�| is spatially uniform and each SC layer has
a single q value, this state is an FFLO state, also called the
“layer helical state.” Indirect evidence for the phase transition
predicted in Ref. [9] has been observed in bilayer or multilayer
Ising SCs [10,11], characterized by an upturn in the in-plane
upper critical magnetic field, accompanied by broken transla-
tional and rotational symmetries, when lowering temperatures
[12].

Given the experimental feasibility of this remarkable
physics, we theoretically evaluate the phase diagram of a
bilayer SC in the presence of an in-plane B by obtaining
self-consistent solutions of the Bogoliubov–de Gennes (BdG)
equations for electrons on a lattice subject to an attractive
Hubbard U interaction. The BdG formalism, which is valid
for a wider range of parameters than the GL approach (valid
only near the critical temperature) and also allows for spatial
variation of the complex gap function, reveals striking physics

beyond that in Ref. [9]. Most remarkably, as the magnetic
field is increased, a transition takes place into a state that
consists of stripes of the BCS state separated by interlayer
vortices (namely 2π phase winding of the order parameter
between two layers), as shown schematically in the inset of
Fig. 1(a). This “BCS stripe” or vortex lattice state continu-
ously evolves into a uniform FFLO state (or the layer helical
state) of Ref. [9] as the magnetic field is further increased.
An immediately testable prediction of our work is that the
state occurring close to the transition line in the experiment
of Ref. [11] is a a BCS stripe state, the striped character of
which can be revealed by a measurement of the local order
parameter, the amplitude of which should show periodic os-
cillations in the direction perpendicular to the magnetic field,
as well as by the distribution of local supercurrent. This, we
believe, will provide a more direct and definitive confirmation
of the underlying FFLO physics in Ref. [11]. We show that an
effective Pokrovsky-Talapov theory with Josephson coupling
captures certain qualitative features described above.

II. MODEL HAMILTONIAN AND METHOD

We model each layer of the double-layer SC as a square
lattice, with intralayer hopping t1 = 1 and an interlayer hop-
ping t [inset of Fig. 1(c)]. In this work, we report all our
energies and temperature in units of t1. Superconductivity is
incorporated through an on-site attractive interaction term, i.e.
a negative-U Hubbard model. The Hamiltonian is given by
H = H0 + HI with

H0 = −
∑

δ̂,l, j,σ

(
eiAl

δ̂, j c†
l, j+δ̂,σ

cl, j,σ + e−iAl
δ̂, j c†

l, j,σ cl, j+δ̂,σ

)

− t
∑
j,σ

(
eiAz, j c†

+, j,σ c−, j,σ + e−iAz, j c†
−, j,σ c+, j,σ

)

−μ
∑
j,l,σ

c†
l, j,σ cl, j,σ , (1)
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FIG. 1. (a) B-t phase diagram at T = 0, U = 4, and μ = −3. The error in the thermodynamic value of the critical flux is determined
by performing linear fits of the data in Fig. 4, with different numbers of points. The insets show schematics of the current flow patterns for
the two states. (b) The B-T phase diagram for U = 4, μ = −3, N = 40, and t = 0.5. The green, red, and blue dots show BCS, stripe, and
normal states. (c) The average gap amplitude as a function of temperature for three different values of �p/�0 for U = 4, μ = −3, N = 40,
and t = 0.5. (d) The relative phase at four different points in panel (b) as we first move along the transition line from BCS to stripe state and
then along the BCS to normal state. The plots for T = 0, �p = 0.062�0 and T = 0.12, �p = 0.08�0 coincide.

HI = −U
∑

j,l

c†
l, j,↑c†

l, j,↓cl, j,↓cl, j,↑. (2)

The layers are taken to be parallel to the x-y plane, l = ± and
σ = ↑,↓ are the layer and spin indices, j ≡ ( jx, jy) labels the
lattice sites in a plane, and δ̂ = x̂, ŷ denotes in-plane unit vec-
tors. The operator cl, j,σ annihilates an electron with spin σ at
site j in layer l . The magnetic field is taken as B = Bŷ. It is in-
corporated through Al

δ, j and Az, j , which are the Peierls phases
for intra- and interlayer hoppings, determined by the condition
that the phases around each plaquette add to 2π�p/�0, where
�p is the flux per plaquette and �0 = h/e is the flux quantum.
We will work with the gauge choice, Al

x̂, j = lπ × �p/�0,
and Al

ŷ, j = 0 = Az, j . Note that this gauge choice does not
break the periodicity of the lattice, implying that the in-plane
magnetic field does not break the translational symmetry; in
other words, we do not need to define a magnetic unit cell
(MUC) and the flux �p can take arbitrary values. We discuss
the consequences of working with an MUC in Appendix A.

Note that we have not included either a Zeeman term for
coupling of the magnetic field to the spin or the spin-orbit
coupling. The Zeeman term is negligible in bilayer Ising su-
perconductors for which the spin is pinned to the out-of-plane
directions. As shown in Appendix B, the Ising spin-orbit
coupling essentially renormalizes a hopping matrix element.
The model considered here thus applies to superconductivity
in transition-metal-dichalcogenide (TMD) bilayers with Ising
spin-orbit coupling.

The mean field BdG Hamiltonian HMF, bilinear in electron
operators, is obtained by replacing the HI term by

HI → −
∑
l, j

(
�l, jc

†
l, j,↑c†

l, j,↓ + ��
l, jcl, j,↓cl, j,↑ − |�l, j |2

U

)
,

(3)

�l, j = U 〈cl, j,↓cl, j,↑〉, (4)

where 〈· · · 〉 denotes the thermal average and ��
l, j is the com-

plex conjugate of �l, j . We solve for this Hamiltonian for a
square system of size N × N in the x-y plane. We take a unit
cell of size 1 in the ŷ direction, and let it span the entire
system (N sites) in the x̂ direction. So, counting two layers, we
have N × 1 × 2 sites in the unit cell. We assume antiperiodic
boundary conditions in both x̂ and ŷ directions to ensure Bloch
states occur in both ±k. Note that these results should be valid
even if we choose a different boundary condition, as discussed
in Appendix C. We perform our calculation for various N
values and extrapolate to 1

N → 0 to obtain the thermodynamic
limits for various quantities. It is also useful to define the total
flux through the system: � = N�p.

To go to the momentum space, we write j = Rj + αx̂,
where Rj = jyŷ is the position vector of the unit
cell containing the site j, and α = 1, . . . , N is the
in-plane site index within the unit cell. We then define
the transformation: cl, j,σ = 1

N

∑
k eik·R j cl,α,σ (k), where

k = π
N nyŷ; ny = −(N − 1),−(N − 3), . . . , (N − 1) (ny

should only takes odd integer values, so we must choose
N to be even). Defining an 8N dimensional vector
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	(k) = [{cl,α,↑(k)}, {cl,α,↓(k)}, {c†
l,α,↑(−k)}, {c†

l,α,↓(−k)}]T,
we obtain (closely following Ref. [13])

HMF = 1

2

∑
k

	†(k)ĤBdG(k)	(k) + 1

2

∑
k

Tr[H0(k)]

+
∑

j,l

|�l, j |2
U

, (5)

where ĤBdG is an 8N × 8N BdG matrix and H0(k) is the
single particle part of the Hamiltonian in Fourier space. The
eigenenergy spectrum of HMF can be obtained by the diago-
nalization of ĤBdG.

To obtain self-consistent solutions we (i) begin with an ini-
tial guess �

guess
l,α = |�|e ilnπα

N on the site α = 1, . . . , N , which
corresponds to n vortices in the entire system; (ii) construct
the BdG Hamiltonian to calculate �l,α using Eq. (4); (iii) use
this as our new guess; and (iv) repeat this process until we
get a self-consistent result, defined by the condition that the
relative difference between the absolute values of the gaps
in two successive steps is less than some tolerance (typically
taken to be 10−5) at each site. We perform this for all values of
0 � n � Int[2�/�0] + 1 and take the self-consistent solution
with the lowest free energy F = 〈HMF − T S〉, where the ther-
mal average of the first term on the right hand side of Eq. (5)
is given by 1

2

∑
k,β Eβ (k)nF [Eβ (k)] with nF (E ) = (eE/(kBT ) +

1)−1, and 〈S〉 = −kB
∑

k,β (nF [Eβ (k)] log nF [Eβ (k)] + {1 −
nF [Eβ (k)]} log{1 − nF [Eβ (k)]}). We have tested the stability
of the lowest-energy solution by adding a random variation to
the initial guess. We discuss this in more detail in Appendix D.
Our solutions have zero net current, as required by Bloch’s
theorem [14]. In Appendix E we argue that even though we
are working with a lattice, our analysis should be valid in the
continuum limit.

The in-plane current and that between two layers are given
by Jδ,l (r j ) = − ∂H

∂Aδ,l
and Jz(r j ) = − ∂H

∂Az
, respectively [13]. The

average current densities in the x̂ and ẑ directions are〈
Jl

x, j

〉 = i
∑

σ

(
eiAl

x̂, j
〈
c†

l, j+x̂,σ cl, j,σ
〉 − e−iAl

x̂, j
〈
c†

l, j,σ cl, j+x̂,σ
〉)
,

〈
Jz, j

〉 = it
∑

σ

(
eiAz, j

〈
c†
+, j,σ c−, j,σ

〉 − e−iAz, j
〈
c†
−, j,σ c+, j,σ

〉)
and the average current density in the ŷ direction vanishes.
Note that even though HMF breaks the U (1) symmetry, the
current density satisfies the continuity equation 〈∇ · J〉 = 0.
This follows because the source term in the mean field equa-
tion that breaks the U (1) symmetry identically vanishes when
the self-consistency condition is imposed [15].

III. PHASE DIAGRAM

We first consider the T = 0 phase diagram and obtain for a
given N the lowest-energy state to determine the critical val-
ues of �/�0 below which the BCS state survives. We obtain
the thermodynamic limit by extrapolation. (The number of
vortices in the ground state varies as a function of N .) The
resulting phase diagram is shown in Fig. 1(a) as a function of
B and t .

To bring out the nature of the ground state, an im-
portant quantity is the relative phase, namely the gauge
invariant difference between phases of the order parameter
at two sites that lie directly across one another (i.e. have
the same x-y coordinates) in the two layers. The Hamilto-
nian is invariant under the gauge transformation: cl, j,σ →
c̃l, j,σ = eiψ j,l cl, j,σ , � j,l → �̃ j,l = e2iψ j,l � j,l , Al

δ̂, j
→ Ãl

δ̂, j
=

Al
δ̂, j

− ψ j+δ̂,l + ψ j,l , and Az, j → Ãz, j = Az, j − ψ j,+ + ψ j,−
(the last two are needed to ensure the invariance of the hop-
ping term). The gauge invariant relative phase is defined as
arg(�+,α/�−,α ) − 2Az,α with Az,α = 0 for our chosen gauge.

For sufficiently small �, the ground state is in the “BCS
state.” Here the relative phase is uniformly zero (the phases in
the two layers are locked by interlayer tunneling and the gap
can be taken to be real), the gap amplitude is constant, there
are no interlayer supercurrents, and there are no spontaneous
net currents, although the top and the bottom layers have equal
and opposite diamagnetic currents [16].

The BCS state survives up to a critical magnetic flux.
Figure 2(a) depicts the relative phase for a magnetic flux just
above the critical value. Evidently, there are regions where the
relative phase remains nearly constant separated by regions
where it rapidly changes by 2π . Thus, rather than a relative
phase linearly varying with x, the system finds it energeti-
cally favorable to create BCS stripes running parallel to the
direction of the magnetic field. Associated with the formation
of stripes is a periodic variation in the amplitude of the gap
[Fig. 2(c)], and also the phase of the gap [Fig. 2(e)]. The
stripe state also has a complex current pattern. Figure 2(g)
displays the current in the top layer (J+

x ); the current in the
bottom layer is J−

x = −J+
x and the interlayer current can be

deduced from the current at each lattice site. In the limit of
large flux, we find the relative phase changes linearly with
x, recovering the layer helical state of Ref. [9], with a net
change of about 4π�/�0 across the system corresponding to
two vortices per flux quantum, and the gap amplitude is nearly
constant.

Intuitively, the BCS stripe state can be viewed as arising
from a competition between the interlayer tunneling and the
in-plane magnetic flux. While the interlayer tunneling tends
to lock the SC order parameter phases between two layers,
thus favoring the BCS state, the in-plane magnetic flux tends
to drive a variation of this relative phase by introducing in-
terlayer vortices to form the layer helical state. The highly
nonuniform BCS stripe state emerges as a compromise be-
tween these two competing tendencies.

We have also evaluated the finite temperature phase dia-
gram, shown in Fig. 1(b) for t = 0.5. Figure 1(c) shows how
the gap amplitude varies as a function of T , where the gap |�|
in the stripe state denotes the spatial average of the gap am-
plitude. The transitions from either the BCS or the stripe state
to the normal state follow the standard behavior. The average
gap amplitude varies smoothly across the transition from the
BCS to the stripe state because the number of vortices per
flux quantum rises continuously from zero. Figure 1(d) shows
the behavior of the relative phase near the phase boundary
separating the BCS and the stripe states as a function of T ;
the phase becomes more linear as T approaches Tc, consistent
with Ref. [9].
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FIG. 2. BCS stripe state for a system of length N = 60 for different values of the magnetic field. (For clarity, we show only half of the
system; this behavior repeats in the other half.) For small �/�0 the state (not shown) has zero relative phase, spatially uniform gap, equal and
opposite currents in two layers, and no interlayer current. The first column corresponds to a magnetic flux � just above the critical value, and
the second corresponds to a high �. Spatial variations are shown for (a), (b) the relative phase (difference between the phases in two layers);
(c), (d) the gap amplitude; (e), (f) the phase of �, shown by an arrow at each site, determined up to a global U(1) rotation; and (g), (h) the
current density J+

x in the top layer. The magnitudes of the gap are the same in both layers. The current in the bottom layer is J−
x = −J+

x , from
which the interlayer current may be deduced. The black dots in panels (e) and (f) show the positions of interlayer vortices in the gap parameter
(determined up to a global translation). The parameters chosen are U = 4, μ = −3, T = 0, t = 0.6. Note that for a large � the relative phase
varies linearly with the position and the gap amplitude becomes nearly constant.

IV. EFFECTIVE MODEL

We now show that the qualitative features of the phase
diagram can be captured by an effective theory. The free
energy per unit length along the y direction takes a frustrated
sine-Gordon form:

Feff = ρs

∫
dx

[
1

2
(∂xϕ − 2Bz0)2 − gcos (ϕ)

]
(6)

where ϕ is the relative phase between two layers, ρs is the
phase stiffness, and the last term represents the Josephson
coupling between the layers. This model is equivalent to
the Pokrovsky-Talapov model used to study commensurate-
incommensurate phase transitions [16–19]. We have neglected
the fluctuations of the magnitude of the order parameter and
assumed that ϕ is slowly varying in space. Details of the
analysis of this model and its derivation from the microscopic
Hamiltonian will be presented in a future work. In what fol-
lows, we outline some salient results.

The magnetic field B tends to wind ϕ, and in the ab-
sence of the Josephson coupling between layers (g = 0) ϕ

varies linearly with position, yielding the FFLO state. On the
other hand, the Josephson coupling tends to lock the relative
phase at ϕ = 2πn where n ∈ Z, which is the BCS state.

In general, these two effects compete, leading to the vortex
lattice/stripe state. In particular, (6) admits two classes of
solutions, depending on whether 1

2π

∫
dx∂xϕ = Nv is zero or

nonzero where Nv is the number of vortices in the system.
If Nv = 0 then the minimum of (6) is ϕ = 2πn (the BCS
state) and the free energy per unit length in the x direction is
feff = −ρs(g − 2B2z2

0 ). At a critical magnetic field Bc =
√

g
π2z0

,
the state with a single vortex (Nv = 1) has the same energy
as the BCS state, and higher magnetic fields yield the vortex
lattice state, which we discuss below.

The saddle point equation of (6) is the one-dimensional
sine-Gordon equation:

∂2
x ϕ = g sin (ϕ). (7)

A family of exact solutions to (7) that describes the vortex
lattice state may be expressed in terms of the Jacobi amplitude
function am(u, k):

ϕε (x) = 2 am
(√

ε x,
g

ε

)
+ π (8)

where the solutions are labeled by the parameter ε � g, and
for each solution ε is given by the value of the “integral of
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motion”:

ε = 1

4
(∂xϕε )2 + g

2
[cos (ϕε ) + 1]. (9)

Plugging (8) into (6), we may express the free energy per unit
length in the x direction as

feff(χ,ω) = ρsg

[
− 1

χ2
+ 2E (χ2)

χ2K (χ2)
− πω

χK (χ2)

]
(10)

where χ = √
g/ε and ω = Bz0/

√
g. We have neglected the

magnetic energy 2ρsB2z2
0 since it is just a constant shift. K is

the elliptic integral of the first kind and E is the complete el-
liptic integral. For a fixed value of ω, feff should be minimized
with respect to χ :

1

ρsg

∂ feff

∂χ
= 4(χ2 − 1)K2(χ2) − E (χ2)[2E (χ2) − πωχ ]

= 0. (11)

By the implicit function theorem, the solution χ (ω) is a dif-
ferentiable function of ω. Therefore, the solutions (8) evolve
continuously as a function of B, and no phase transition is
encountered for B > Bc, consistent with our BdG study above.
In particular, for ε = g, the solution is a single vortex:

ϕε (x) = 2am
(√

gx, 1
) + π = 4 arctan(e

√
gx ), (12)

and for ε 
 g the solution

ϕε (x) = 2am
(√

εx, 0
) + π = 2

√
εx + π (13)

describes the FFLO state.

V. DISCUSSION

The interplay between superconductivity and magnetic
field in two-dimensional systems has been of interest in
numerous contexts, including the possibility of topological
superconductivity supporting Majorana zero modes [20–33].
Here we predict a stripe state in a bilayer superconductor
exposed to a parallel magnetic field.

An earlier Landau-Ginzburg treatment of this problem by
Liu [9] assumes the layer helical state ansatz �l (r) = |�|eilqx

where l = ± is the layer index and q is spatially uniform. He
finds qc = 2eBz0

2h̄ in the limit of large B, where z0 is the distance
between two layers; the relative phase difference 2qcx changes
by 2π in a distance �x = 2π/2qc, which contains Bz0�x =
�0/2 flux quanta, thus producing twice as many vortices as
the number of flux quanta. In contrast, the highly nonuniform
stripe state found in this work cannot be represented by a layer
helical state with a single q in each layer. Qiu and Zhou [16]
have also studied this problem within the Landau-Ginzburg
formalism, while assuming that the gap function has the peri-
odicity of an MUC containing one flux quantum (the ratio of
the number of vortices to the number of flux quanta can take
only discrete values in this model); this periodicity results in a
Bloch wave solution for the superconducting order parameter
and a commensurate-incommensurate phase transition. The
BCS stripe state in our work does not respect the periodicity
of the MUC, and thus does not belong to the Bloch wave
solution.

By obtaining the self-consistent solutions of the BdG equa-
tions, we have shown that the application of a parallel B causes

a transition into a stripe state. We thus predict that the phase
transition observed in 2H-stacked NbSe2 in Ref. [11] is into a
stripe state with spatially varying gap amplitude, which adi-
abatically evolves into the uniform-gap layer-helical/FFLO
state of Ref. [9] for large B. This stripe state may be identified
most directly by measuring the oscillations in the amplitude
of the gap, which are predicted to be strongest at low temper-
atures near the phase boundary.

We finally note that the BdG formalism employed in our
calculation neglects the physics arising from the fluctuations
in the phase of the gap, which will be important close to Tc.
In principle, the transition from the superconducting to the
normal state will be a Berezinskii-Kosterlitz-Thouless type.
However, our model ought to be valid for T << Tc.

ACKNOWLEDGMENTS

U.N., J.S. (at The Pennsylvania State University), and
J.K.J. were supported in part by the U.S. Department of
Energy (DOE), Office of Basic Energy Sciences (BES), un-
der Grant No. DE-SC0005042. Work by J.S. and E.R. was
supported by the DOE, Office of Science, BES under Grant
No. DE-SC0022245. C.-X.L acknowledges support from the
NSF through The Pennsylvania State University Materials
Research Science and Engineering Center (Grant No. DMR-
2011839). We acknowledge Advanced CyberInfrastructure
computational resources provided by The Institute for Cyber-
Science at The Pennsylvania State University.

DATA AVAILABILITY

The datasets generated and analyzed during this study are
openly available in the GitHub repository [34] under the Cre-
ative Commons Zero v1.0 Universal (CC0 1.0) license.

APPENDIX A: CONSEQUENCES OF CHOOSING
A MAGNETIC UNIT CELL

As we mentioned in the main text, we have not chosen an
MUC. This is because the in-plane magnetic field does not
break the translation symmetry, as is evident from our choice
of gauge. We show here that the results change qualitatively
and quantitatively when we do choose a magnetic unit cell,
because by choosing the SC gap to have the same periodicity
as an MUC, we are restricting the allowed space of solutions.
For illustration, we will choose a magnetic unit cell with one
flux quantum passing through, as in Ref. [16].

We choose the size of the MUC to be of length M = m
in the x̂ direction, where m is an integer and the flux per
plaquette is �p = �0/m. So the dimensions of the MUC are
M × 1 × 2 in the xyz coordinates. We choose �l, j to have
the same periodicity as the MUC. For our calculations, we
choose L × ML MUCs in the x̂ and ŷ direction respectively,
so the full system is a square of size ML, with L = 12. We as-
sume antiperiodic boundary conditions to ensure Bloch states
occur in both ±k. To go to the momentum space, we define
j = Rj + αx̂, where Rj = [ jx

M ]Mx̂ + jyŷ (we have used the
notation [x] to denote the integer part of x) is the position
vector of the MUC containing j, and α = 1, . . . , M is the
in-plane site index within the MUC.
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FIG. 3. The B-t phase diagram computed at T = 0, U = 4, and
μ = −3 obtained using a model in which we have chosen an MUC
corresponding to one flux quantum. The green, black, and red points
show states with no vortices (called the BCS state), a state with
one vortex per flux quantum, and a state with two vortices per flux
quantum, respectively

We then proceed similarly as in the main text, defining
the Fourier transformed creation and annihilation operators
with the allowed momentum values to be k = π

ML (nxx̂ +
nyŷ); nx = −(M − 1),−(M − 3), . . . , (M − 1); and ny =
−(ML − 1),−(ML − 3), . . . , (ML − 1). Both nx and ny can
only take odd values, so we must choose M (and m) to be
even. Following the procedure in the main text, we arrive at
an expression that looks exactly the same as Eq. (5), but with
the newly defined momentum values and an 8M × 8M matrix
for HBdG.

The phase diagram computed using this method is shown
in Fig. 3. Comparing with Fig. 1, we can see that there are
both qualitative and quantitative differences.

(i) In Fig. 3, a much higher value of magnetic field is
needed for vortices to go in. This is because we are missing
solutions with vortices which do not have the same periodicity
as the MUC.

(ii) In Fig. 3 there are discreet stripe states. This is because
the imposed boundary condition allows only an integer num-
ber of vortices to pass through one MUC.

We note differences from the phase diagram calculated
in Ref. [16]. The phase diagram we calculated in Fig. 3 is
calculated at zero temperature, while the authors in Ref. [16]
use a Ginzburg-Landau approach, which is only valid near the
critical temperature.

APPENDIX B: MAPPING THE BILAYER TMD SYSTEM
WITH ISING SPIN-ORBIT COUPLING TO OUR MODEL

In this Appendix, we demonstrate that the model we used
can serve as the low-energy theory of the bilayer TMD system
with Ising spin-orbit coupling. We start from the continuous
model for a TMD monolayer. The single particle Hamiltonian
for the layer l (l = ±) at zero magnetic field reads

H0,l (p = εK + k) = ξk + lεβSOCsz, (B1)

where ξk is the kinetic energy term, ε = ± is the valley index,
βSOC is the Ising spin-orbit coupling strength, and sz is the
Pauli matrix for the spin degree of freedom. In the second

quantization notation with the electron annihilation operator
denoted as ck,ε,l,s (s being the spin index), the Hamiltonian
takes the form

Ĥ0 =
∑

k,ε,s,s′
c†

k,ε,l,s[H0,l (εK + k)]s,s′ck,ε,l,s′ . (B2)

One can see that this Hamiltonian has a diagonal form with the
spin-valley-layer locking, namely 〈ε = +,↑|Ĥ0,l |ε = +,↑〉 =
ξk + lβSOC, 〈ε = +,↓|Ĥ0,l |ε = +,↓〉 = ξk − lβSOC, 〈ε =
−,↑ |Ĥ0,l |ε = −,↑〉 = ξk − lβSOC, and 〈ε = −,↓|Ĥ0,l |ε =
−,↓〉 = ξk + lβSOC for nonzero Hamiltonian matrix el-
ements. Since we only wish to consider the lowest-
energy bands and assume βSOC > 0, we project the
full Hamiltonian onto the basis A = {|l = −, ε = +,↑〉,
|l = −, ε = −,↓〉, |l = +, ε = +,↓〉, |l = +, ε = −,↑〉}.
The low-energy Hamiltonian then becomes

Ĥ low
0 =

∑
k,α∈A

(ξk − βSOC)c†
k,α

ck,α.

Note that the spin-valley indices are opposite for the two
layers in the above basis wave functions, and this will have
substantial influence on the interlayer tunneling.

The interlayer tunneling term in the original basis (before
projecting onto the lowest-energy bands) preserves both spin
and valley:

Ĥt = −t
∑
k,ε,s

(c†
k,ε,−,sck,ε,+,s + c†

k,ε,+,sck,ε,−,s).

But, for l = − and +, the spin and valley indices are opposite
for low-energy bands in the basis set A. Therefore the direct
tunneling from this term in the low-energy theory is zero. In-
terlayer tunneling between low-energy bands can, however, be
mediated by the combination of Ĥt and the Zeeman coupling
from the in-plane magnetic field.

We consider the in-plane magnetic field along the x̂ direc-
tion. The Zeeman coupling is then given by

ĤZ = gBx

∑
k,l,ε,s

c†
k,ε,l,s(σx )s,s′ck,ε,l,s′ ,

where g is the g factor. From the Hamiltonian forms of Ĥt

and ĤZ , we see that while the interlayer tunneling term pre-

(a) (b)

FIG. 4. Determination of the thermodynamic limit (N → ∞) for
the critical flux per plaquette, �p,c, for (a) t = 0.1 and (b) t = 0.2.
We have chosen U = 4 and μ = −3. The data points in blue cor-
respond to the critical flux calculated assuming a periodic boundary
condition, and the data points in black correspond to an antiperiodic
boundary condition. We extrapolate both to the limit 1/N → 0 using
a linear fit to get the values in Fig. 1(a).
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FIG. 5. Free energy (F ) profile around the ground state for
(a) U = 4, μ = −3, t = 0.5, �p = 0.06�0, N = 40, T = 0 and
(b) U = 4, μ = −3, t = 0.5, �p = 0.12�0, N = 40, T = 0 as a
function of �1 and �2.

serves the spin-valley index while changing the layer index,
the Zeeman term for an in-plane magnetic field changes the
spin index while preserving the other two. Thus, we get an
effective tunneling between the lowest-energy bands from the
second order term in perturbation theory:

Ĥ low
t = tgBx

βSOC

∑
k

[c†
k,+,−,↑ck,+,+,↓ + c†

k,−,−,↓ck,−,+,↑ + H.c.].

The effective low-energy theory is given by

Ĥ low = Ĥ low
0 + Ĥ low

t .

Due to the redundancy in the labeling of the basis
wave functions, we can remove the valley index in
the notation, so that |l = −, ε = +,↑〉 → |l = −,↑〉,
|l = −, ε = −,↓〉 → |l = −,↓〉, |l = +, ε = +,↓〉 →
|l = +,↑〉, |l = +, ε = −,↑〉 → |l = +,↓〉, and tgBx

βSOC
→ t .

The resulting Hamiltonian is a model for the spinful electrons
in a bilayer system. We may include the orbital effect of
the magnetic field by performing the Peierls substitution
and then implement the lattice regularization for Ĥ low to
transform it to the lattice model, and with that, we can recover
the noninteracting Hamiltonian H0 in the main text. Thus,
the in-plane Zeeman effect only provides a correction to the
interlayer tunneling parameter t .

APPENDIX C: PERIODIC VS ANTIPERIODIC
BOUNDARY CONDITIONS

While we assume an antiperiodic boundary condition for
all our calculations, in Fig. 4, we have compared the results
for the critical flux density �p,c (defined as the minimum
flux density above which the system allows vortices to enter)
assuming both periodic and antiperiodic boundary conditions.

(a) (b)

FIG. 6. (a) The band structure along ky = 0. (b) The band struc-
ture along kx = ky. The blue lines are the energy dispersion for our
lattice system; red lines are parabolas fit near the origin. (There are
two bands because of two layers.) The plots are for U = 4, t = 0.3,
μ = −3, and zero magnetic field. The thin horizontal line marks the
Fermi energy.

As we can see, the results for the critical flux density coincide
for both periodic and antiperiodic boundary conditions.

APPENDIX D: STABILITY OF SOLUTIONS

We take multiple initial guesses and identify the solution
with the lowest energy (which in general is given by most
of the initial guesses). We add a small random perturbation
to this solution as another guess, and always find that the
self-consistent algorithm takes us back to the original lowest-
energy solution, which ensures that it is not a local minimum.
In Fig. 5, we have have taken two solutions and added a
perturbation �1 + i�2 at each site, and calculated the free
energy (F = 〈HMF − T S〉) as a function of �1 and �2, to
verify we are indeed at a minimum. (Note that here we are
only varying two parameters, but there are 4N possible inde-
pendent parameters, two corresponding to each site in the unit
cell.) Finally, the continuity of our phase diagram as we vary
parameters of the Hamiltonian gives us full confidence that we
have succeeded in finding the minimum energy solution.

APPENDIX E: CONTINUUM LIMIT

In our calculation, the lattice model allows us to obtain
self-consistent results (because the number of parameters we
need to obtain self-consistently is finite). However we believe
our results should also be valid in the continuum limit. To
ensure this, we have chosen μ = −3 in our calculations, to
ensure the Fermi surface is quite close to the bottom of the
band (which extends from −4 − t to 4 + t in units of inter-
layer coupling). As shown in Fig. 6, this lies in the region
where the energy dispersion is nearly parabolic.
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