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We study the dynamics of magnetization coupled to a thermal bath of elastic modes using a system plus
reservoir approach with realistic magnetoelastic coupling. After integrating out the elastic modes we obtain a
self-contained equation for the dynamics of the magnetization. We find explicit expressions for the memory
friction kernel and hence, via the fluctuation-dissipation theorem, for the spectral density of the magnetization
thermal fluctuations. For magnetic samples in which the single domain approximation is valid, we derive an
equation for the dynamics of the uniform mode. Finally we apply this equation to study the dynamics of the
uniform magnetization mode in insulating ferromagnetic thin films. As experimental consequences we find that
the fluctuation correlation time is of the order of the ratio between the film thickness, h, and the speed of sound
in the magnet and that the linewidth of the ferromagnetic resonance peak should scale as B1

2h where B1 is the
magnetoelastic coupling constant.
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I. INTRODUCTION

Thermally induced fluctuations of the magnetization are
responsible for one fundamental limit on the signal-to-noise
ratio of small magnetoresistive sensors.1 The noise scales
inversely with the volume of the sensors and peaks at
frequencies2,3 that are now close to the ever increasing data
rate of magnetic storage devices. The increase of data rates
combined with the continuing decrease of the dimensions of
the sensors makes magnetic noise inevitable and motivates
work aimed at achieving a detailed understanding of its char-
acter.

The standard approach toward modeling of magnetization
fluctuations is to start from the Landau-Lifshitz-Gilbert-
Brown equation4

��

�t
=

�

Ms
� � � �E

��
+ h� + �� �

��

�t
, �1�

where � is the gyromagnetic ratio, �=M /Ms is the magne-
tization direction, M is the magnetization, MS is the magni-
tude of the saturation magnetization, E is the free energy, and
h is a random magnetic field. This equation assumes that the
characteristic time scale of the magnetization dynamics is
longer than the typical time scale of the environment that is
responsible for the dissipative term proportional to �. In
practice the use of this equation is partially inconsistent, re-
sulting in some practical limitations to its application.5,6 The
source of the problem is that the dissipation is local in time.
Because of the fluctuations-dissipation theorem, this implic-
itly requires the random field to have white noise properties,
i.e., to have zero autocorrelation time. Since the contribution
of the random field to the magnetization dynamics ���h
depends on �, Eq. �1� exhibits white multiplicative noise.7 It
follows that in order to integrate Eq. �1� reliably we need to
track the evolution of � on very short time scales for which
the white noise approximation for h is likely to be unphysi-
cal.

In this paper we address the physics that determines the
correlation time of the random field. We start in Sec. II by
considering a formal model of a magnetic system coupled to
an environment and specialize in Sec. III to an environment
consisting of elastic modes. In Sec. IV we consider the case
in which a single magnetic mode corresponding to coherent
evolution of the magnetization in a small single-domain sys-
tem is coupled to the elastic environment. In Sec. V we con-
sider a thin film geometry in which the magnetization is
coupled to elastic modes of the system and its substrate.
Finally in Sec. VI we conclude with a discussion of the pos-
sible role of other sources of dissipation, in particular dissi-
pation due to particle-hole excitations in the case of metallic
ferromagnets.

II. GENERIC RESERVOIR

Calling qn the degrees of freedom of the reservoir, we
consider the following form for the total Lagrangian:

L = LS���x�,�̇�x�� + LR�qn, q̇n� + LI���x�,qn� − �L���x�� ,

�2�

where LS���x� ,�̇�x�� is the Lagrangian that describes the
dynamics of the magnetization when not coupled to external
degrees of freedom, LR�qn , q̇n� is the Lagrangian for the res-
ervoir and LI���x� ,qn� is the interaction Lagrangian that
couples the magnetization to the reservoir degrees of free-
dom. The term �L���x�� is a counter term that depends on
� and the parameters of the reservoir but not on the dynamic
variables of the reservoir.8,9 This term is introduced to com-
pensate a renormalization of the energy of the system caused
by its coupling to the reservoir.8

The Landau-Lifshitz equations for the decoupled system
magnetization follow from the magnetic Lagrangian,
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LS = �
VM

�Ms

�
A��� · �̇ − Es����dx , �3�

where A is a vector field defined by the equation ��

�A���=� and ES��� is the magnetic free energy func-
tional and VM the volume of the ferromagnet. We model the
reservoir as a set of classical degrees of freedom,

LR =
1

2�
n

mnq̇n
2 − ER�qn� . �4�

The Euler-Lagrange equations for the total Lagrangian �2�
yield the following coupled dynamical equations:

mnq̈n =
�

�qn
†LR�qn, q̇n� + LI��,qn�‡ �5�

��

�t
= � �

�

Ms

�

��
†ES��,�̇� − LI��,qn� + �L���‡ .

�6�

When LI is linear in the coordinates of the bath, we can
formally integrate �5� to get q�n��t� as a function only of the
initial conditions and � and then insert the result in �6� to
eliminate the reservoir coordinates from the dynamical equa-
tions for �, integrating out the reservoir degrees of freedom.
An example of the application of this procedure for a quan-
tum mechanical model of the interaction between magneti-
zation and reservoir degrees of freedom can be found in
Ref. 10.

III. MAGNETIZATION COUPLED TO ELASTIC MODES:
GENERAL

If we consider only long wavelength vibrations we can
treat the lattice as a continuous medium and use results from
elasticity theory. The potential energy functional, ER, of the
elastic medium can then be expressed in terms of the strain
tensor ui,j,

uij 	
1

2
� �ui

�xj
+

�uj

�xi
� ,

where u is the displacement vector field.
We want to study the dynamics of the magnetization when

coupled to elastic deformations of the system.11 We will be
interested in applying our results to polycrystalline elastic
media which can be treated as isotropic to a good approxi-
mation. �It is quite straightforward, albeit quite tedious, to
extend our results to the case of nonisotropic media with
specific lattice symmetries.� For isotropic elastic media it
follows from general symmetry considerations that, to lowest
order, we can express the magnetoelastic energy in the
form,12

EI = B1 �
i,j=1

3 �
VM

�i� juijdx , �7�

where B1 is the magnetoelastic coupling constant. For the
case of soft ferromagnet thin films, the main contribution to

the magnetoelastic energy will be given by the magnetostatic
energy dependence on strain. This contribution to EI is nor-
mally referred to as the form effect.13 The constant B1 can be
extracted from magnetostriction data. For an isotropic elastic
medium with isotropic magnetostriction, 	, we have12 that

B1 =
3

2
	

E

2 − 

, �8�

where E is the Young’s modulus and 
 the Poisson’s ratio.
The Lagrangian for an elastic reservoir LR is

LR =
1

2
�

V

� u̇2dx − ER, �9�

where � is the mass density, V the total volume of the elastic
medium �magnetic film plus substrate� and ER is given by14

ER = �
V
� E

2�1 + 
� �
i,j=1

3

uij
2 +


E

2�1 + 
��1 − 2
��i=1

3

uii
2�dx .

�10�

The equation of motion for the displacement will then be

�
�2u

�t2 = −
�

�u�x�
�ER�u� + EI��,u�� . �11�

It will prove useful to expand u in terms of the elastic normal
modes f�n�,

u = �
n

q�n��t�f�n��x� , �12�

where the functions f�n� satisfy the boundary conditions ap-
propriate for u and satisfy

�ER�f�n��
�f�n��x�

= �n
2�f�n��x�, n � N , �13�

1

M
�

V

�f�n��x� · f�m��x�dx = �nm, �14�

where M is the total mass, M 	
V�dx.
In terms of the degrees of freedom, q�n�, we have

LI = − EI = − B1�
n

q�n��
i,j
�

VM

�i� j f ij
�n�dx �15�

with

f ij
�n� 	

1

2
� � f i

�n�

�xj
+

� f j
�n�

�xi
� .

We then see that the interaction Lagrangian is linear in the
coordinates q�n�, with coupling constants

c�n���� 	 �
i,j
�

VM

�i� j f ij
�n�dx . �16�

This property will allow us to integrate out the reservoir
degrees of freedom to obtain an equation for the dynamics of
the magnetization in term of � alone.
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Let us first discuss the dynamics of the reservoir degrees
of freedom q�n�. Using Eqs. �11�–�14� we find the dynamical
equations

q̈�n� = − �n
2q�n� −

B1

M
c�n���� . �17�

Integrating �17� we find

q�n��t� = �q�n��0 cos��nt� +
�q̇�n��0

�n
sin��nt�

−
B1

M�n
�

0

t

sin��n�t − t���c�n����t���dt�, �18�

where q�n��0 and q̇�n��0 are the initial values of q�n� and q̇�n�,
respectively. The coupling of the magnetization to the reser-
voir will cause damping and frequency renormalization. In
order to be able to separate the two effects it is useful to
integrate the last term on the right-hand side of �18� by parts
obtaining

q�n��t� = �q�n��0 cos��nt� +
�q̇�n��0

�n
sin��nt� −

B1

M�n
2c�n����t��

+
B1

M�n
2c�n����0��cos��nt�

+
B1

M�n
2�

0

t

dt��cos��n�t − t���

��
VM

��c�n�

��
�

x�,t�
� ·

��

�t�
�

x�
dx�� . �19�

Using the expression of the interaction Lagrangian given by
�15� and the definition of the coupling constants c�n� we have

�LI

��
= − B1�

n

q�n��c�n�

��
. �20�

Combining Eqs. �6�, �19�, and �20� for the dynamics of the
magnetization we find

��

�t
= � �

�

Ms

�ES

��
+ � �

�

Ms

��L���
��

+ �

�
�

Ms
�

n

B1��c�n�

��
�

x,t
�
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�n
sin��nt��

−
B1

2

M�n
2c�n����t����c�n�

��
�

x,t

+
B1

2

M�n
2c�n����0��cos��nt���c�n�

��
�

x,t

+
B1

2

M�n
2�

0

t

dt��
VM

dx� cos��n�t − t�����c�n�

��
�

x�,t�

·
� ��

�t�
�

x�
��c�n�

��
�

x,t
� . �21�

The counter term �L of the total Lagrangian is defined to
cancel the frequency renormalizing term

� �
�

Ms
�
i,n

B1
2

M�n
2c�n����t����c�n�

��
�

x,t
. �22�

It follows from Eq. �16� that

�c�n�

��l
= �

i

�i� � f l
�n�

�xi
+

� f i
�n�

�xl
� . �23�

To simplify and extract the physical content from these
cumbersome equations, we identify the memory friction ker-
nel tensor � jm,

� jm�t,t�,x,x�� 	 
�t − t���
n

�

Ms

B1
2

M�n
2cos��n�t − t���

���c�n�

��m
�

x�,t�
��c�n�

�� j
�

x,t
, �24�

where 
�t− t�� is the Heaviside function. We also recognize
the random field h,

h�x,t� 	
B1

Ms
�

n
��q�n��0 cos��nt� +

�q̇�n��0
�n

sin��nt���c�n�

��
.

�25�

Assuming that the distribution of initial positions of the en-
vironment degrees of freedom follows the canonical classical
equilibrium density for the unperturbed reservoir we find that

�h�x,t�� = 0, �26�

�hj�x,t�hm�x�,t��� =
2KBT

�Ms
� jm�t,t�,x,x�� . �27�

In terms of � jm and h the dynamical equation for � takes the
form

��l

�t
= �ijl�i

�

Ms

�ES

�� j
+ ��ijl�ihj

+ �ijl�i�
0

t

dt��
VM

dx��
m

� jm�t,t�,x,x��� ��m

�t�
�

x�

+ �ijl�i
�

Ms
�
i,n

B1
2

M�n
2c�n����0��cos��nt�

�c�n�

�� j
.

The final term is an artifact of the assumption that in the
initial state the reservoir was decoupled from the system.9,15

Dropping this term, the dynamical equations for magnetiza-
tion coupled to a thermal bath of elastic modes is

��l

�t
= �ijl�i

�

Ms

�ES

�� j
+ ��ijl�ihj

+ �ijl�i�
0

t

dt��
VM

dx��
m

� jm�t,t�,x,x��� ��m

�t�
�

x�

�28�

with � jm defined by �24� and h a random field with statistical
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properties given by �26� and �27�. Equation �28� is quite
general. In particular notice that to obtain �28� we did not
perform any expansion in �. As a consequence, as long as
we keep the exact form for ES���, Eq. �28� includes also the
effects of spin wave interactions. In principle we could also
include in ES a term to take into account the scattering of
spin waves due to disorder. Equation �28� does not, however,
take into account the coupling between the magnetization
and particle-hole excitations. As we discuss in Sec. VI, this
coupling appears to be of critical importance in many metal-
lic ferromagnets.

Equation �28� is very different from the standard stochas-
tic Landau-Lifshitz-Gilbert �s-LLG� equation, Eq. �1�. Be-
cause the magnetoelastic energy, EI, �7�, is nonlinear in the
magnetization, in �28� both the damping kernel and the ran-
dom field depend on the magnetization and therefore are
state dependent. This is in contrast with the s-LLG equation
for which both the damping kernel, ���t− t��, and the ran-
dom field are independent of �.

Another difference between Eq. �28� and the s-LLG equa-
tion is that the damping kernel, � jm, is in general a tensor.
The tensor character of the damping has been suggested pre-
viously on phenomenological grounds.6 Starting from the
physical coupling �7�, in our approach the tensor character of
� jm appears naturally as a consequence of �a� the nonlinearity
in � of the magnetoelastic coupling �7�, �b� the anisotropy of
the elastic modes due to the boundary conditions and/or an-
isotropy of the elastic properties. For small oscillations of �
around its equilibrium �up to quadratic order�, the kernel � jm
can be assumed to be independent of �. Even in this linear-
ized case, the damping kernel that appears in �28� will still
have a tensor form due to the anisotropy of the elastic
modes.

As mentioned above, the standard s-LLG damping kernel
is simply ���t− t��, i.e., the damping is frequency indepen-
dent. As a consequence, from the fluctuation-dissipation
theorem, we have that the spectrum of the random field that
appears in �1� is also frequency independent. This differs
from Eq. �28� for which the damping kernel, and therefore
the spectrum of the random field, is frequency dependent.

Given the geometry and the material properties of the
system we can find the elastic modes, f�n�, and then integrate
Eq. �28� using a micromagnetic approach. The integration of
Eq. �28� could give insight in particular on the damping of
the uniform magnetization mode for different geometries and
show the range of validity of the classic picture16 of a two
stage damping process in which the motion of the coherent
magnetization induces nonuniform magnetic modes on short
time scales that then decay to lattice vibrations.

IV. MAGNETIZATION COUPLED TO ELASTIC MODES:
UNIFORM MAGNETIZATION

We now study the dynamics of the uniform magnetic
mode in the case when we can neglect its interaction with
spin waves and the only coupling to external degrees of free-
dom is magnetoelastic. Projecting Eq. �28� on the uniform
mode we find that

d�l

dt
= �ijl�i

�

VMMs
�

VM

�ES

�� j
dx + �ijl�i

�

VM
�

VM

hjdx

+ �ijl�i
1

VM
�

0

t

dt��
VM

dx�
VM

dx��
m

� jm�t,t�,x,x��
d�m

dt�
.

�29�

Let us define the space averaged error field

h�t� 	
1

VM
�

VM

h�x,t�dx ,

the damping kernel

�̄ jm�t,t�� 	
1

VM
�

VM

dx�
VM

dx�� jm�t,t�,x,x�� ,

and the coefficients

cl
�n� 	 �

VM

�c�n�

��l
dx .

Using the fact that � is uniform we obtain

cl
�n� = �

i

�i�
VM

� � f l
�n�

�xi
+

� f i
�n�

�xl
�dx . �30�

In terms of the coefficients cl
�n� we can then write

h̄l =
B1

MsVM
�

n

cl
�n���q�n��0 cos��nt� +

�q̇�n��0
�n

sin��nt��
and

�̄ jm = 
�t − t��
�B1

2

MsMVM
�

n

1

�n
2cj

�n��t�cm
�n��t��cos��n�t − t��� .

�31�

The uniform magnetization dynamics can then be expressed
in terms of the spatially averaged random field h and
memory friction kernel �̄ jl,

d�l

dt
= �ijl�i

1

VM

�

Ms
�

VM

�ES

�� j
dx + ��ijl�ih̄j

+ �ijl�i�
0

t

dt��
m

�̄ jm�t,t��
d�m

dt�
�32�

with

�h� = 0 �33�

and

�h̄j�t�h̄m�t��� =
2KBT

�VMMs
�̄ jm�t,t�� . �34�

V. THIN FILM UNIFORM MAGNETIZATION
DYNAMICS

We now apply Eq. �32� to study the dynamics of the uni-
form magnetization in a thin ferromagnetic film placed on
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top of a nonmagnetic substrate and covered by a nonmag-
netic capping layer, as illustrated in Fig. 1. We assume that
all media are polycrystalline and treat them as isotropic. We
will assume the lateral size, Ls, Fig. 1, to be much bigger
than the film thickness h. Notice that if we take Ls bigger
than the domain wall width our assumption that the nonuni-
form magnetic modes are quenched would not be valid any-
more. We will consider only oscillations of the magnetization
around an equilibrium position parallel to the x3 axis so that
we can calculate the damping kernel tensor � jm assuming the
elastic modes to depend only on x3. Otherwise, to find the
correct damping kernel, we would have to take into account
the fact that the lateral size, Ls, is finite and solve the full
three-dimensional �3D� elasticity problem for the elastic
modes.

A. Damping kernel and random field

To find the dynamics of the magnetization using Eq. �32�
we need to evaluate the memory friction kernel � jm. The first
step in this calculation is the determination of the elastic
normal modes f�n� which satisfy the following equation:

�n
2�f�n� = −

E

2�1 + 
�
�2f�n� −

E

2�1 + 
��1 − 2
�
� �� · f�n�� .

�35�

We allow the film, the substrate, and the capping layer to
have different elastic properties and solve Eq. �35� separately
in the different subsystems using the appropriate elastic con-
stants. We assume for the sake of definiteness that the sub-
strate and capping layer material is identical. We then match
solutions by imposing the continuity of displacement and
stresses at the interfaces x3=0, and x3=h. As boundary con-
ditions we assume the top surface of the capping layer to be
free and no displacement at the bottom of the substrate.

Because in our case the elastic modes only depend on x3,
Eq. �30� simplifies to

cl
�n� = Ls

2�
i

�f i
�n���il�3 + �i�3l�

with

�f i
�n� 	 f i

�n��h� − f i
�n��0� .

The spatially averaged damping coefficients have a simple
expression in terms of the �f i

�n�,

�̄ jl = 
�t − t��
Ls

2B1
2

Mh
�

n

��f i
�n��2

�n
2 cos��n�t − t���

���ij�3�t� + �i�t��3j���il�3�t�� + �i�t���3l� . �36�

Equation �36� follows from the completeness relation of the
polarization vectors. Once we know the coefficients �f i

�n�,
Eqs. �33�, �34�, and �36� completely specify the dynamical
equation �32� for the magnetization.

As an example we consider the case of a polycrystalline
ferromagnetic thin film, like YIG, placed on a substrate of a
polycrystalline paramagnet like tantalum, Ta. As typical val-
ues we take17 the ones listed in Table I. For the magnetostric-
tion we assume 	=2�10−6. Using Eq. �8�, we find that B1
=4�106 ergs/cm3. Given the elastic modes implied by these
parameter values, we can calculate the coefficients �f i

�n�.
Once we know the coefficients �f i

�n� we have all the ele-
ments to completely specify Eq. �32�.

We generate a stochastic field h with the correct statistical
properties by using its Fourier representation. To obtain

�y�t�y�t��� = G�t − t�� �37�

we choose18

�y���y����� = ��� − ���G��� , �38�

where

y��� =
1

2�
�

−�

�

y�t�e−i�tdt

and

G��� =
1

2�
�

−�

�

G���e−i��d� .

In our case we have from Eq. �31�, that the memory fric-
tion kernel �̄ jl depends separately on t and t�. As a conse-
quence, through �34�, we have that the average �h�t�h�t���
does not depend only on the time difference �= t− t�. The

FIG. 1. Geometry considered for the case of a thin ferromag-
netic film on a nonmagnetic substrate.

TABLE I. Elastic properties. ct ,cl are the transverse and longi-
tudinal speed of sound respectively.

Magnetic film Substrate/capping layer

E 200 Gpa 180 Gpa


 0.33 0.33

� 5.0 g/cm3 16.6 g/cm3

ct 4.0 km/s 2.0 km/s

cl 5.0 km/s 4.1 km/s
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random field h�t� therefore does not define an ergodic pro-
cess and in particular we cannot use Eq. �38�. For this reason
it is convenient to define the auxiliary random variables,

xi 	 �
n

�f i
�n���q�n��0cos��nt� +

�q̇�n��0
�n

sin��nt��
and the auxiliary kernels

gi�t − t�� 	 
�t − t���
n

��f i
�n��2

�n
2 cos��n�t − t���

so that we have

�xi�t�xj�t��� =
2KBT

M
gi�t − t���ij .

The random variables xi�t� therefore describe an ergodic pro-
cess and we can use Eq. �38� to generate them. In terms of xi
and gi we have

h̄l =
B1

Msh
�

i

xi��il�3�t�� + �i�t���3l� ,

�̄ jm =
�Ls

2B1
2

MsMh
�

i

gi��ij�3�t� + �i�t��3j�

���im�3�t�� + �i�t���3m� . �39�

To generate the random field and calculate �̄ jl we then must
calculate the quantities gi��� and their Fourier transforms
gi���. Figures 2�a�, 2�b�, 3�a�, and 3�b� show some typical
profiles for gi��� and gi��� using for the mechanical proper-
ties the values of Table I. We find that in general gi��� does
not depend on the thickness of the capping layer L�.

In the limit in which we can linearize the magnetoelastic
interaction with respect to �, we have

�̄ jm��� =
�B1

2Ls
2

MsMh
gj���� jm. �40�

The damping kernel is diagonal with components equal,
apart from an overall constant, to gj���, in contrast to the
s-LLG equation for which we have �̄ jl���=������ jl. The
power spectrum of the random field component, hj, is then
proportional to gj���, in contrast to the s-LLG equation for
which the power spectrum of each component hj is simply a
constant. Notice that even in this limit �̄ jm preserves its ten-
sor form due to the anisotropy of the elastic modes. In our
specific case we have g1=g2�g3 due to the difference be-
tween the transverse and longitudinal speeds of sound.

From Figs. 2�a� and 2�b�, we see that gi��� goes to zero
for times longer than �D�5�10−2 �0=5h /c, where c	ct,M
is the transverse speed of sound in the magnet. For a film 20
nm thick we then find �D�10 ps. When the relevant fre-
quencies of � are much lower than 1/�D, we can replace the
damping kernel given by �40� with the simple kernel

� jm = � jeff����� jm

with � jeff given by

� jeff =
�B1

2Ls
2

MsMh
�

0

�

gj���d� . �41�

In this limit we recover a damping kernel of the same form
as the one that appears in the s-LLG equation. Here � jeff is
the equivalent to � in �1�. From the results shown in Figs.
2�a� and 2�b� we see that we have

�
0

�

gj���d� �
h2�L + h + L��

c3

and then

� jeff =
�B1

2h

Ms�c3 . �42�

We find that the damping of magnetic modes in thin films is
proportional to B1

2h. Assuming the values given in Table II
we find �1eff=�2eff�2�10−4.

FIG. 2. �Color online� Profiles of ĝ1	g1���c2 / �h�L+h+L��� �a�
and ĝ3	g3���c2 / �h�L+h+L��� �b� for the case of a thin magnetic
film on a tantalum substrate; �0	L /ct,M. For the standard s-LLG
equation gi��� would simply be a Dirac delta centered at �=0.
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B. Integration

After generating the random field h in the way described
above we can proceed in integrating Eq. �32�. We assume
�ES /��=−VMMsHeff with Heff= �0,0 ,Heff� and Heff simply
a constant. Let us define the dimensionless quantities

t̂ 	 �Hefft, Ĥeff 	
Heff

Heff
, ĥ 	

h

Heff
,

�̂ jm 	
�̄ jm

�Heff
, T̂ 	

2KBT

HeffMsVM
,

then in dimensionless form Eq. �32� takes the form

d�l

dt̂
= − �ijl�iĤeffj + �ijl�iĥj + �ijl�i�

0

t̂

dt̂��
m

�̂ jm�t̂, t̂��
d�m

dt̂�

�43�

with

�ĥj�t̂�� = 0, �ĥj�t̂�ĥm�t̂��� = T̂�̂ jm�t̂, t̂�� . �44�

Similarly, for �ES /��=−VMMsHeff, the standard s-LLG
equation, �1�, for the uniform mode, takes the dimensionless
form

d�

dt̂
= − � � Ĥeff + � � Ĥ + �� �

d�

dt̂
�45�

with

�ĥj�t̂�� = 0, �ĥj�t̂�ĥm�t̂��� = �T̂��t̂ − t̂�� . �46�

Using for �̄ jm the expression �39� and for gi��� ,gi��� the
results shown in Figs. 2�a�, 2�b�, 3�a�, and 3�b� and assuming

T̂=10−2 and the values given in Table II we integrate Eq.
�43�. We used the stochastic Heun scheme that ensures con-
vergence to the Stratonovich solution even in the limit of
zero autocorrelation time for the random field.7 The results of
the integration are shown in Figs. 4�a�, 4�b�, and 5�a�. As
initial condition we took �= �0.6,0 ,0.8�, d� /dt̂=0.

We then integrated Eq. �45� setting �=�1eff with �1eff cal-
culated using �41�. The results of the integration are shown
in Figs. 4�a�, 4�b�, and 5�b�.

From Figs. 4�a�, 4�b�, 5�a�, and 5�b� we see that on aver-
age Eqs. �43� and �45� give very similar results. This is ex-
pected because for the initial conditions chosen we are in the
limit of small oscillations around the equilibrium position
and therefore the dependence of �̂ jm on � is negligible. The
main differences, for the case considered, between the results
obtained using �43� and �45� are in the random fluctuations
of �. This is a consequence of the different correlation in
time of the random field h used in �43� and �45�. For ex-
ample, we notice that Eq. �43� seems to give a less noisy

dynamics than �45� even though for both simulations �ĥ�2 is
of the same order of magnitude. If we zoom on a short time
interval, Fig. 4�b�, as a matter of fact, we see that on very
short time scales the amplitude of the random fluctuations for
the two simulations is very similar. However for �45� fluc-
tuations with the same sign are much more likely than for

FIG. 3. �Color online� Values of Re�ĝ1����
	Re�g1����c2 / �h�L+h+L��� �a� and Re�ĝ3����	Re�g3����
�c2 / �h�L+h+L��� �b� at the elastic modes frequencies ��n� for the
case of a thin magnetic film on a tantalum substrate. Shown are the
values for h=0.01L, diamonds, and h=0.02L, circles. For any
�n Re�ĝi��n�� is unique even though this is not completely evident
from the figure because in order to show the behavior of the auxil-
iary kernels over a wide frequency range, the resolution is not high
enough to always show the separation between the single points.
For the standard s-LLG equation gi��� would simply be a constant.

TABLE II. Magnetic properties and dimensions for the system
studied.

Quantity Value

� 1.76�107 s−1 G−1

B1 4�106 ergs/cm3

Ms 150 G

L 1 �m

h 20 nm
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�43�. This is due to the different spectral density of the ran-

dom field. For �45� we simply have �h̄j����2=�T̄, whereas for

�43� �h̄j����2 is equal to gj��� �considering that for our simu-
lation, to a good approximation, we can neglect the depen-
dence of the random field on ��. In particular for �43�
�h̄j����2 has a low frequency cutoff at �=�0	ct,M /L, where
ct,M is the transverse speed of sound in the magnet. This
implies that for �43� we have a much lower probability than
for �45� to have consecutive fluctuations of the random field
with the same sign with the result that the dynamics appears
less noisy.

VI. DISCUSSION AND CONCLUSIONS

In this paper we derived the equation for the dynamics of
the magnetization taking into account its coupling to the lat-
tice vibrations. The equation that we obtain, �28�, is quite

general. Equation �28� will have the same form also if we
include spin-spin and spin-disorder interactions. To take into
account these phenomena it is necessary only to add the ap-
propriate terms to the energy functional ES���.

From the general equation we derived the equation, �32�,
for the dynamics of the uniform magnetic mode in a thin
magnetic film when nonuniform magnetic modes can be as-
sumed frozen out. We find that in general the random field
that appears in the dynamical equation for the magnetization
has a correlation time, �D, of the order of the ratio between
the film thickness, h, and the sound velocity c. When the
time scale for the dynamics of the magnetization is much
longer that �D, we recover the stochastic LLG equation. In
this limit we calculated the value of the effective Gilbert
damping constant, �. For typical ferromagnetic insulators,
like YIG, we find ��10−4, in good agreement with the val-
ues measured in experiments.16,19 We can then conclude that
for magnetic insulators magnetoelastic coupling is the main
source of magnetization damping.

FIG. 4. �Color online� �3 as a function of time obtained inte-
grating the standard s-LLG equation, �45�, and Eq. �43�. In �a� the
trace obtained using Eq. �43� has been offset up by +0.05 for clarity.
In �b� the trace of �3 is shown on a short time scale.

FIG. 5. Envelope curves of the trace of �1 in time as obtained
integrating Eq. �43� �a� and Eq. �45� �b�. �1 oscillates between the
maximum and minimum value given by the envelope curves with
frequency �Heff, equal to 1 in the dimensionless units used.
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Our work predicts that magnetic resonance experiments
on ferromagnetic insulators should be able to observe the
anisotropy of the damping and as a consequence of the cor-
relation of the thermal fluctuations. With our theory it is
possible to exactly calculate the spectral density of the ther-
mal fluctuations. The spectral densities for small samples
will be different from the one observed in bulk experiments
because of the discreteness of the elastic modes. It would be
very interesting to test these results with new experiments on
small ferromagnetic insulators samples. In particular for thin
films one experimental consequence of our work is that the
correlation time of the magnetic fluctuations will be of the
order of h /c where h is the thickness of the ferromagnetic
film and c the speed of sound in the magnet. We also found
that in the limit when the magnetization evolves on time
scales much bigger than h /c the damping of the magnetic
modes is directly proportional to B1

2h. The linewidth of the
ferromagnetic resonance peak in insulating ferromagnetic
thin films should therefore scale as B1

2h, which, in principle,
can be confirmed experimentally.

For ferromagnetic metals, like permalloy, we also find �
�10−4. This value is about two orders of magnitude smaller
than the value observed experimentally.20 The reason is that
in ferromagnetic metals the electronic degrees of freedom are
the main source of dissipation for the magnetization.21,22

Starting from a model of localized d spins exchange coupled
to the s-band electron, the interaction Lagrangian will be

LI = Jsd� dx��x� · s�x� ,

where Jsd is the exchange coupling constant and s is the
conduction electrons spin density

s�x� =
1

2�
a,b

�a
†�x��ab�b�x� ,

where � are the s-band carrier field operators and �ab the
representation of the spin operator in terms of Pauli matrices.
By integrating out the s-band degrees of freedom, in the
linear response approximation Sinova et al.,23 for the damp-
ing of the uniform magnetic mode find

� = lim
�→0

g�BJsd
2

2Ms��
� d3k

�2��3�
a,b

���a�k���+��b�k���2

�� d�

2�
Aa,k���Ab,k�� + ����f��� − f�� + ���� ,

�47�

where Aa,k��� and Ab,k��� are the spectral functions for
s-band quasiparticles and f��� is the Fermi-Dirac distribu-
tion. Equation �47� gives zero damping unless there is a
finite-measure Fermi surface area with spin degeneracy or
there is a broadening of the spectral function due to
disorder.24 Characterizing the quasiparticle broadening by a
simple number �	� /�s, where �s is the quasiparticle life-
time, we can assume

Aa,k��� =
�

�� − �a,k�2 + �2/4
. �48�

Inserting this expression for the spectral functions in �47� we
find � as a function of the phenomenological scattering rate
�. Notice that �47� includes the contribution both of intra-
band, and interband25–27 quasiparticles scattering events. The
intraband contribution is due to spin-flip scattering within a
spin-split band and is nonzero only when intrinsic spin-orbit
coupling is present. From Eq. �47�, using the expression for
Aa,k��� given in �48�, we see that in the limit of weak disor-
der, small �, the intraband contribution to � is proportional
to 1/�, in agreement with experimental results for clean fer-
romagnetic metals with strong spin-orbit coupling28–31 and
previous theoretical work.26,27,32–35 Similarly from �47� we
see that the interband contribution to � is proportional to �.
This result agrees with the experimental results for ferromag-
netic metals with strong disorder36 and previous theoretical
work.25–27 Notice that Eq. �47� implicitly also includes the
contribution due to the so-called spin-pumping effect37–41 in
which spins are transferred from the ferromagnetic film to
adjacent normal metal layers as a consequence of the preces-
sion of the magnetization. In order to calculate this effect in
first approximation we simply must substitute in �47� the
conduction band quasiparticle states, �, calculated taking
into account the heterogeneity of the sample. Assuming for
the scattering rate, 1 /�s, typical values estimated by transport
experiments, from Eq. �47� we find values of � in good
agreement with experiments.

In summary we have studied in detail the effect of the
magnetoelastic coupling to the dynamics of the magnetiza-
tion. Starting from a realistic form for the magnetoelastic
coupling we have found the expression for the damping ker-
nel, � jm. We find that in general � jm is a nondiagonal tensor
nonlocal in time and space. The knowledge of the exact ex-
pression of � jm allows us to correctly take into account the
autocorrelation of the noise term overcoming the zero corre-
lation approximation of the stochastic Landau-Lifshitz-
Gilbert equation. We find that for thin films for which the
single domain approximation is valid, both the damping and
the fluctuations correlation time are proportional to the film
thickness. Our results apply to systems for which the direct
coupling of the magnetization to the lattice vibrations is the
main source of the magnetization relaxation. We have shown
that this is the case for ferromagnetic insulators whereas for
ferromagnetic metals the magnetization relaxation is mainly
due to the s-d exchange coupling.
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APPENDIX: SIMPLE ESTIMATE OF �eff

Let us start from the definition of �̄ jm �Eq. �31��,
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�̄ jm = 
�t − t��A1�
n

1

�n
2cj

�n��t�cm
�n��t��cos��n�t − t��� ,

�A1�

where A1	�B1
2 /MsMVM. For the case of thin film we found

cl
�n� = Ls

2�
i

�f i
�n���il�3 + �i�3l� ,

where

�f i
�n� 	 f i

�n��h� − f i
�n��0� .

Notice that, by definition, f i
�n� are dimensionless and so are

the quantities �f i
�n�. Assuming that at equilibrium is �

= �0,0 ,1� and keeping only the leading terms in � in the
expression for cl

�n� we have

cl
�n� = Ls

2�f l
�n�.

Let us now expand the collective index n in its components,
k ,s where s is the polarization index of the elastic modes.
Then, using the completeness of the polarization vectors and
the fact that the polarization directions are parallel to the axis
x1 ,x2 ,x3 we have

�̄ jm = 
�t − t��A1�
n

1

�n
2cj

�n��t�cm
�n��t��cos��n�t − t���

= 
�t − t��A1Ls
4�

k,s

1

�k,s
2 �f j

k,s�fm
k,s cos��k,s�t − t���

= 
�t − t��A1Ls
4�

k

1

�k,j
2 �f j

k�fm
k � jm cos��k,j�t − t��� .

Now note that

M = �Ls
2L�1 + ĥ + L̂��, VM = Ls

2h ,

where ĥ	h /L, L̂�	L� /L. Then we can write

�̄ jm = 
�t − t��
�B1

2

Ms�L�1 + ĥ + L̂��h

��
k

��f j
k�2

�k,j
2 � jm cos��k,j�t − t��� .

For small enough h /L we can assume �f j
�k��kh with a cutoff

for kD such that kDh=1. We can then define the cutoff fre-
quency �D	ckD=c /h. With this approximation we have

�
k

��f j
k�2

�k,j
2 cos��k,j�t − t���

= �
k

1

�k,j
2 + �D

2 cos��k,j�t − t���

=
1

�D
2 �

0

�

��� − �k,j�
�D

2

�2 + �D
2 cos���t − t���d�

�
1

�D
2

1

�0
�

0

� �D
2

�2 + �D
2 cos���t − t���d�

=
1

�D
2

1

�0
�De−�D�t−t��,

where �0	c /L. In this approximation we can then write

�̄ jm��� � 
�t − t��
�B1

2

Ms�L�1 + ĥ + L̂��h

1

�D
2

1

�0
�De−�D�.

Integrating this expression between �=0 and �=� we find

�̄eff =
�B1

2

Ms�L�1 + ĥ + L̂��h

1

�D
2

1

�0
=

�B1
2

Ms�L�1 + ĥ + L̂��h

h2

c2

L

c

=
�B1

2

Ms��1 + ĥ + L̂��

h

c3 . �A2�

To be more accurate let us define the functions

ĝj��� 	
1

ĥ�1 + ĥ + L̂��

c2

L2�
k

��f j
k�2

�k,j
2 cos��k,j����

so that we can write

�̄ jm = 
���
�B1

2

Ms�L2

L2

c2 ĝj��� .

The functions ĝj��� are plotted in Fig. 2. Integrating ĝj���
between 0 and � we find

� 	 �
0

�

ĝj���d� �
h

c

and then finally

�̄eff =
�B1

2

Ms�c2

h

c
,

analogously to what we found previously �A2�.
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