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We study the effect of gate-induced electric fields on the properties of semiconductor-superconductor
hybrid nanowires which represent a promising platform for realizing topological superconductivity and
Majorana zero modes. Using a self-consistent Schrödinger-Poisson approach that describes the semi-
conductor and the superconductor on equal footing, we are able to access the strong tunneling regime and
identify the impact of an applied gate voltage on the coupling between semiconductor and superconductor.
We discuss how physical parameters such as the induced superconducting gap and Landé g factor in the
semiconductor are modified by redistributing the density of states across the interface upon application
of an external gate voltage. Finally, we map out the topological phase diagram as a function of magnetic
field and gate voltage for InAs/Al nanowires.
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I. INTRODUCTION

Composite heterostructures provide an opportunity to
realize exotic phases ofmatter by exploiting the properties of
individual components. A particularly interesting example
involves semiconductor-superconductor (SM-SC) hybrid
structures which represent a promising platform for
the realization of topological superconductivity [1–9].
Topological superconductors support exotic neutral excita-
tions consisting of an equal superposition of an electron and
a hole—Majorana zero-energy modes (MZMs) [10–12].
Because of the particle-hole symmetry in a superconductor,
such modes appear at zero energy and, thus, there is no
cost to occupy these states. This leads to a growing
degeneracy of the ground state as the number of MZMs
is increased, a hallmark of topological superconductors.
Theory predicts that exchanging the position of MZMs
[10,13] or performing certain nonlocal measurements of the
charge encoded in a collection of MZMs [14] leads to a
nontrivial transformationwithin the degenerate ground-state
manifold, and represents a non-Abelian operation which is
independent of the details of its execution. This property of
topological superconductors has generated a lot of

excitement in the condensed matter physics, quantum
information, and material science communities [15–18] as
it opens up the possibility of Majorana-based topological
quantum computing [6,9,19,20].
Realizing topological superconductivity in the laboratory

is not an easy task since the originally proposed models
[10,12] involved spinless p-wave superconductivity.
Electrons in solids have spin 1=2 and most of the common
superconductors have s-wave pairing which involves elec-
trons with opposite spins. Therefore, quenching spin degen-
eracy and preserving superconducting pairing is quite
nontrivial. One way to overcome the problem is to use
materials with a strong spin-orbit interaction which couples
spin and orbital degrees of freedom. A number of platforms
for realizing MZMs in the laboratory have been recently
proposed [21–48]. The most promising proposal for realiz-
ing MZMs is based on one-dimensional SM-SC hybrid
structures [27,28] and involves a semiconductor with strong
spin-orbit coupling (such as InAs or InSb) and an s-wave
superconductor (such as Al). In this proposal, a magnetic
field or another time-reversal breaking perturbation is needed
to drive the system into the spinless topological regime
[27,28]. This proposal has triggered significant experimental
activity [49–69], and there is a compelling body of exper-
imental evidence that MZMs have been realized in these
systems. For a very recent example, see Ref. [64], which
reports a robust quantized 2e2=h zero-bias conductance
consistent with the Majorana scenario.
Much of the progress in realizing MZMs with proximi-

tized nanowires is attributed to the material science advance
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in fabricating semiconductor-superconductor heterostruc-
tures. In the first generation of experiments [49–54] the
superconductor was deposited ex situ, which required
removing the native oxide forming on the semiconductor’s
surface due to air exposure. In the second generation of
experiments the thin aluminum shell [56] is deposited
epitaxially and is thus grown on pristine SM facets without
breaking the vacuum; see Fig. 1. Tunneling spectroscopy
measurements of the induced superconducting gap
[55,60,62,64,68] in such samples exhibit a large induced
gap (i.e., close to the bulk gap of the superconductor),
which indicates that the improved epitaxial interfaces are
characterized by a strong hybridization of the states in the
semiconductor and superconductor. In this strong tunneling
regime, many physical parameters such as the g factor and
spin-orbit coupling are strongly renormalized due to the
hybridization. In order to quantitatively understand the
hybridization and its implications on the band structure as
well as other physical properties, one has to consider the
band offset at the superconductor-semiconductor interface.
Depending on the sign of the band offset, one can have either
a Schottky barrier or an accumulation layer [70–73]. Based
on preliminary angle-resolved photoemission spectroscopy
studies [74], one finds that the band offset for epitaxially
grown InAs=Al heterostructures is −ð200–300Þ meV, sup-
porting the accumulation layer scenario.
Proper theoretical treatment of the strong-coupling

regime is also necessary to understand how external gates
affect the electronic state, and in particular the topological
nature, of SM-SC heterostructures. Furthermore, recent
proposals for realizing scalable architectures for topologi-
cal quantum computation with MZMs rely on fine electro-
static control [75–79]. Thus, understanding the effect of
electric fields on the low-energy properties of the prox-
imitized nanowires is critical both for the interpretation of
the existing Majorana experiments [57,60,62,64,68] as well
as for the optimization of proposed Majorana devices [9].
In order to understand the physical properties of the

proximitized nanowires, one needs to solve the electrostatic
and quantum-mechanical problems self-consistently, i.e.,

perform Schrödinger-Poisson (SP) calculations. Compared
to the case of purely semiconducting heterostructures
[80–82], the problem at hand is much more challenging
technically because it involves disparate materials with very
different effectivemasses, Fermi energies, g factors, etc. (see
Table I). In other words, the standard numerical tools based
on the continuum mass approximation cannot be applied to
semiconductor-superconductor hybrid systems. Therefore,
modeling of the semiconductor-superconductor hybrid
structures requires developing numerical techniques which
can effectively take into account different length scales in the
semiconductor and superconductor.
Previous effective models for superconductor-

semiconductor hybrids [87–92] do not properly describe
the experimental system and provide only qualitative pre-
dictions for the electric field dependence. These models rely
on independent phenomenological parameters such effective
masses, spin-orbit couplings, g factors, as well as tunneling
strength between semiconductor and superconductor. While
this approachmay be suitable for theweak tunneling regime,
naive extensions of such models to the strong-coupling limit
are inadequate. This is because the electric field applied to the
semiconductor can drastically change the electrons’ confine-
ment, i.e., push or pull electron density in the semiconductor
to or away from the interface. This in turn strongly affects
physical parameters of the system, including, as we will see,
the tunneling rate, effective spin-orbit coupling, g factor, as
well as induced superconducting gap.
More advanced models have been introduced recently

[93–97] which treat the effects of an electric field within
some effective models where the superconductor is taken
into account via boundary conditions. This approach, while
being computationally advantageous, does not take into
account the effects arising from the redistribution of the
wave function between the semiconductor and the super-
conductor. In this work, we treat the superconducting and
semiconducting degrees of freedom explicitly on the same
footing. Using an adaptive discretization algorithm for
the SM and SC components, we develop an effective
model which is computationally tractable and allows us
to adequately capture the effect of the gate-induced electric
field on the heterostructure.

(a) (b)(a) (b)

FIG. 1. (a) SM-SC heterostructure based on hexagonal nano-
wire. 10-nm-thick Al layer (blue) is deposited on two facets of
InAs (brown) hexagonal wire with a height of 60 nm. The back
gate is shown schematically in gray. (b) Rectangular geometry of
the wire that supports the same number of subbands. The back
gate is emulated by a boundary condition at the bottom.

TABLE I. Physical parameters for InAs and Al.

Parameter InAs Al

m# 0.026 [83] 1
ϵr 15.15
W (eV) −0.25 [74]

gbare −15 [84] 2
α (eV nm) 0.01 [85] 0
εF (eV) 0 11.27 [86]
Δ0 (meV) 0 0.34 [86]

Lz (nm) 60 10
Ly (nm) 52 52
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Our results allow one to understand and interpret
recent experiments investigating the electric field and
disorder dependence of the effective parameters
[57,60,62,64,68]. They have motivated the recent system-
atic experimental study of the tunability of the super-
conductor-semiconductor coupling in Majorana nanowires
[98]. A better understanding of the effect of the external
electric fields on the phase diagram of superconductor-
semiconductor nanowires is important to reinforce the
confidence that the observed zero-bias peaks are due to
Majorana zero modes. Our results describe the conditions
necessary to achieve a strong tunneling regime between
superconductor and semiconductor and show how external
electric fields and the presence of disorder affect the
topological phase diagram of SC-SM nanowires. They
provide an important contribution for the realization of the
next-generation experiments designed to verify the non-
Abelian nature of the modes responsible for the zero-bias
peak observed so far in transport measurements and to give
an indisputable proof of the realization of Majoranas.
The paper is organized as follows. We begin with a

discussion of the setup and methods in Sec. II, where we
provide technical details of the Schrödinger-Poisson
approach. In Sec. III we present our results. We first
focus on the limit of zero magnetic field and then discuss
the behavior at finite magnetic fields. We then discuss the
resulting topological phase diagram. We conclude the
section with studying the effects of disorder that change
the strength of SM-SC coupling. We summarize our results
in Sec. IVand discuss their relevance for current and future
experiments.

II. SETUP AND METHODS

We consider the system shown in Fig. 1. The nanowires
used in current experiments typically have a hexagonal
shape as shown in Fig. 1(a). The cross section of the wire,
which we take to be the ðy; zÞ plane, consists of a 10-nm-
thick Al film (blue) covering two facets of InAs nanowire
(orange). The electrostatic environment is controlled by a
back gate (gray). For practical reasons we do not explicitly
treat this gate and the separating dielectric medium in our
calculations, but rather take the gate into account only as a
boundary condition for the potential in the wire. In order to
convert this into the actual voltage applied to the gate
(which is sample dependent), the distance to the gate and
the dielectric constant have to be taken into account. For the
devices of interest, the length of the wire Lx is much larger
than its transverse dimensions Ly;z.
The presence of the Al layer breaks the hexagonal

symmetry of the nanowire cross section and, as shown
in Fig. 2, causes the formation of an electrostatic potential
that strongly confines the electrons close to the SM/Al
interface. For this reason the hexagonal cross section of the
wire can be well approximated by an effective rectangular
cross section, as shown in Fig. 1(b). We henceforth refer to

the effective wire with rectangular cross section as the slab
model. By choosing Ly for the slab model to be such that
the number of cross-sectional modes is the same as for the
hexagonal cross section wire, the use of the slab model does
not cause any significant loss of accuracy and significantly
simplifies the numerical implementation and solution of the
SP problem.
The Hamiltonian for the heterostructure in the normal

state can be written as (ℏ ¼ 1)

Ĥn ¼ −∂z

!
1

2m#ðzÞ
∂z

"
þ 1

2m#ðzÞ
ðk̂2x þ k̂2yÞ þ ϕðzÞ − εFðzÞ

− αðzÞðk̂xσy − k̂yσxÞ þ
μBgbareðzÞB

2
σx; ð1Þ

where the spatially dependent effective mass m#ðzÞ, Fermi
energy εFðzÞ, spin-orbit coupling strength αðzÞ, and g factor
gðzÞ are equal to m#ðzÞ ¼ mSM [m#ðzÞ ¼ mSC] for z <
60 nm (z > 60 nm) and similarly for εFðzÞ, αðzÞ, and gðzÞ;
k̂x, k̂y are the momentum operators in the x and y direction,
respectively; ϕðzÞ is the electrostatic potential; σx;y;z are the
Pauli matrices in spin space; μB and B are the Bohr
magneton and the external magnetic field, respectively.
The values for the material parameters used henceforth are
given in Table I.
In this work we investigate bulk properties of the

heterostructure. Therefore, we assume henceforth that
the nanowire is infinitely long and translationally invariant
along the x direction. This allows one to use the basis of
planewaves along the x direction and to replace the operator
k̂x in Eq. (1) by its eigenvalue. In the clean limit considered
here, due to the finite-size quantization in the y and z
directions, the spectrum of the system consists of effectively
1D subbands. We obtain the eigenvalues and eigenstates of

FIG. 2. The electrostatic calculation uses Dirichlet boundary
conditions at z ¼ 0 and z ¼ LSM

z , i.e., the top and bottom of the
semiconducting wire. At z ¼ 0, the boundary condition is given
by the gate voltage Vg, while at the interface to the aluminum it is
given by the band offset W (see also Table I). This leads to an
accumulation layer at the interface.
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the resulting Hamiltonian Ĥnðk̂x → kxÞ corresponding to
these subbands via a mode decomposition in the y direction
and by replacing the derivatives with respect to zwith finite
differences using a nonuniform grid [99] with two different
spacings corresponding to the semiconducting and super-
conducting components, respectively. The spacings are
chosen such that dz < π=kF in order to minimize discreti-
zation errors. Using a nonuniform spacing significantly
alleviates the computational cost and allows us to system-
atically study the phase diagram of the problem.
In the absence of spin-orbit coupling and disorder, the

discrete modes along the y direction are

ψα¼0
ny ðyÞ ¼

ffiffiffiffiffi
2

Ly

s

sin
$
πny
Ly

y
%
; ð2Þ

with the different ny ∈ N modes being decoupled. The
spin-orbit coupling term hybridizes them [87]. The corre-
sponding matrix elements are

Anyn0yðzÞ ¼ −iαðzÞhΨα¼0
ny j d

dy
jΨα¼0

n0y
i

¼ −
2iαðzÞ
Ly

ð−1þ ð−1Þnyþn0yÞ
nyn0y

n2y − ðn0yÞ2
: ð3Þ

In the fψkx;ny;z ¼ eikxxΨα¼0
ny ðyÞδðzÞg basis the Hamiltonian

matrix takes the form

Hn ¼ Hα¼0
n − αðzÞkxσy þAðzÞ ⊗ σx; ð4Þ

where A is the Ny × Ny matrix with elements given by
Eq. (3), Ny is the number of discrete modes along the y
direction considered, and Hα¼0

n is the matrix obtained by
projecting the Hamiltonian Eq. (1) for α ¼ 0 on this basis.
We treat the s-wave superconductor at the BCS mean-

field level. The Bogoliubov–de Gennes (BdG) Hamiltonian
for the system can be written as

H ¼ Hα¼0
n ⊗ τz − αðzÞkxσy ⊗ τz

þAðzÞ ⊗ σx ⊗ τ0 − ΔðzÞσy ⊗ τy; ð5Þ

where τ0;x;y;z are Pauli matrices in Nambu (particle-hole)
space. We include the superconducting pairing only in the
superconductor, i.e., ΔðzÞ ¼ Δ0 for z > 60 nm, where Δ0

is the SC gap of Al (see Table I), and ΔðzÞ ¼ 0 for
z < 60 nm. In a finite magnetic field, the superconducting
gap in the Al shell is suppressed due to the inclusion of a
finite g factor for the Al (see Table I). Given that the Al film
is very thin, see Fig. 1, we neglect orbital effects due to the
magnetic field.

A. Electrostatics

In order to obtain the electrostatic profile, one has to solve
the SP equations self-consistently. Given that the BCSmean-
field approximation breaks charge conservation, this is a
nontrivial task; see, e.g., discussion in Ref. [100]. However,
electrostatic screening of a metal is only weakly modified
by the superconductivity with the small parameter being
Δ0=ϵF ≪ 1. As a consequence, to obtain the electrostatic
potential within this accuracy the charge density entering the
Poisson equation can be calculated neglecting the super-
conducting pairing, i.e., using the HamiltonianHn instead of
the full HamiltonianH. The effects of the spin-orbit coupling
and Zeeman terms [94] on the total electron density profile
nðzÞ are also very small and can be neglected. Thus, to solve
the full problemwe follow a two-step approach.We first solve
the SP problem in the normal state taking α ¼ 0 andB ¼ 0 to
obtain the electrostatic profile. We then use the obtained
electrostatic profile to find the eigenvalues and the eigenstates
of the system for Δ0 ≠ 0, α ≠ 0, and different values of B.
The first step consists in solving self-consistently the

Schrödinger equationHnjΨi ¼ EjΨi, requiringΨ to vanish
at the boundaries of the system [101], and the Poisson
equation,

∂2
zϕðzÞ ¼ −

nðzÞ
ϵ0ϵr

; ð6Þ

where nðzÞ ¼ ð2πLyÞ−1
P

ny;E½Ψ'<¼0

R
dkxjΨkx;nyðzÞj

2, ϵr is
the relative dielectric constant of the SM, see Table I, and ϵ0
is the vacuum dielectric constant. The setup for the Poisson
equation is shown in Fig. 2. At z ¼ LSM

z the boundary
condition forϕðzÞ is given by the band offsetW between the
SMand the SC.The boundary condition at z ¼ 0 is set by the
back gate. The coupled Schrödinger-Poisson equations are
solved iteratively until convergence is achieved, using
Anderson’s mixing algorithm [102].

B. Band structure

The calculated electrostatic profile ϕðzÞ is inserted into
the full Hamiltonian H to obtain the band structure
fεðnÞðkxÞg and the corresponding eigenstates of the nano-
wire. Since the chemical potential is included in the
Hamiltonian, the effective Fermi energy for each band is
set simply by the bottom of the band. We can find the Fermi
momentum in each band kðnÞF by solving εðnÞðkðnÞF Þ ¼ 0. The
Fermi velocity is given by vnF ¼ ½ðdεðnÞÞ=ðdkðnÞÞ'jkðnÞ¼kðnÞF

≃

2jϵðnÞðkx ¼ 0Þj=kðnÞF . In addition, from the eigenstates at
k ¼ kF we extract how strongly different subbands are
coupled to the superconductor, which we define through
the weight of the corresponding state in the superconductor:

WSC ¼ 1 −
X

ny;σ

Z
LSM
z

0
jΨðkFÞj2dz: ð7Þ
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We define the gap as theminimumof the energy of the first
excited state: Eg ¼ minkx jε

ðnÞ
BdGðkxÞj. At zero magnetic field,

Eg gives an estimate for the induced gap Δ ¼ EgðB ¼ 0Þ.

III. RESULTS

In this section, we discuss the results of our numerical
simulations. We first discuss only the electrostatic problem
for both a model of a hexagonal wire and the slab model
introduced above. We then investigate the nature of the
electronic states in a limit of strong coupling between
the semiconductor and superconductor and discuss their
superconducting properties at zero magnetic field. Then we
study properties of the hybrid nanowires in a finite
magnetic field and obtain estimates for the effective g
factor in the hybrid structure. We present the topological
phase diagram and compare it with previous results
[87,103]. Finally, we present the results for the wires with
the disorder potential present in the superconductor and
show its impact on the induced gap and the phase diagram.

A. Electrostatics and density distribution

1. Hexagonal cross section

In order to obtain the correct number of subbands for a
given gate configuration for the wire with the hexagonal
cross section, it is sufficient to solve the SP problem using
the Thomas-Fermi approximation and simply requiring the
wave function to vanish at the boundaries of the cross
section. The solution of the full SP problem is computa-
tionally expensive due to the shape of the cross section and
unnecessary for the purpose of simply estimating the
number of cross-sectional modes. We perform this calcu-
lation in COMSOL and obtain eigenstates using the KWANT

package [104].
Our results are summarized in Fig. 3, where we show the

density for all occupied modes below the Fermi energy.
This calculation does not explicitly treat the aluminum

shell; instead, it assumes that the only effect of the presence
of the Al layer is to induce a band offset. We set this
band offset to W ¼ −0.25 eV [74]; see Table I. The
approximations used to obtain the results of Fig. 3 cause
quantitative inaccuracies for the local density of states
(LDOS) and the carrier density profile. However, these
results are sufficiently accurate to estimate the number of
electronic cross-sectional modes below the Fermi energy
for a given Vg. In addition, the results of Fig. 3(a) show the
qualitatively correct result that for Vg ≤ 0 most of the
charge density is localized at the semiconductor-super-
conductor interface due to the strong band offset between
the InAs and Al. This fact means that for the slab model, the
thickness of the SM wire in the z direction does not affect
the electronic properties in a significant way as long as it is
few times larger than the confinement length in the z
direction (∼20 nm). The effective width Ly of the slab
model can then be fixed by requiring the number of
subbands to be equal to the number of cross-sectional
modes obtained from the hexagonal calculation, as long as
Ly is also larger than the confinement length in the z
direction. For Vg ¼ 0, the hexagonal cross section results
show that there are six modes; see Fig. 3(b). From this we
obtain that for the slab model, Ly ¼ 52 nm, larger than the
confinement length for Vg ¼ 0. In the remainder, all of the
results are obtained using the effective slab model with
Ly ¼ 52 nm width and LSM

z ¼ 60 nm thickness for the SM

and LðSCÞ
z ¼ 10 nm for Al, as shown in Table I.

2. Slab model

We now switch to the slab model, which explicitly treats
the superconducting Al shell. We self-consistently solve the
coupled Schrödinger-Poisson equations for three different
values of Vg to obtain the electrostatic potential ϕðzÞ and
the density nðzÞ, respectively, shown in Figs. 4(a) and 4(b).
Since the Al shell is taken to be metallic with an extremely
short screening length, the electrostatic potential is
assumed to be constant throughout the Al. The dashed

FIG. 3. (a) Electronic density in the cross-sectional cut of the
nanowire for Vg ¼ 0 obtained by the Thomas-Fermi approxima-
tion. (b) Square modulus of eigenstates of the wire in the normal
state at B ¼ 0 with energies −0.096, −0.068, −0.052, −0.023,
−0.021, and −0.006 eV for panels 1–6, respectively.

(a) (b)

FIG. 4. (a) Electrostatic potential profile ϕðzÞ and (b) electronic
density nðzÞ in the semiconducting part of the system obtained
from a self-consistent Schrödinger-Poisson calculation for three
representative values of the gate voltage.
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line in Fig. 4(a) shows the Fermi level in Al. It is worth
pointing out that because Δ0 ≪ ϵF, including the pairing
term for the Al makes only a negligible difference to the
electrostatic profile.
For Vg ≤ 0, the electrostatic potential confines the carrier

density in a layer about 20 nm wide close to the SM/Al
interface, as shown in Fig. 4(b). For Vg > 0, the electro-
static potential is below the Fermi energy also on the gate
side. This allows the accumulation of charges also near the
gate, as shown by the result in Fig. 4(b) for Vg ¼ 0.2 V.

B. Nature of electronic states in strong-coupling limit

We now discuss the nature of the electronic states in the
electrostatic environment determined by the gate as well as
the band offset between the semiconducting wire and the
metallic shell. In particular, we investigate how strongly
states are hybridized between the two materials depending
on the gate voltage.
In Figs. 5(a)–5(c), we show the electrostatic profile

(cf. Fig. 4) for three values of the gate voltage.
Figures 5(d)–5(f) show the square of the wave function
jΨkx¼0;nyðzÞj

2 for all occupied subbands for the correspond-
ing electrostatic profile. Here we have chosen the momen-
tum of the band bottom, kx ¼ 0, so that all filled bands are
included. The color scale in Fig. 5 indicates the weight of
the wave functions in the superconductor [see Eq. (7)]. In
Figs. 5(a)–5(c), we have also superimposed horizontal lines
showing the energy of the corresponding subbands; fur-
thermore, the intensity of the lines shows the square

magnitude of the wave functions, and in the semiconduct-
ing part the color scale indicates again the weight in the
superconductor.
For the case of Vg ¼ 0 [Figs. 5(b) and 5(e)], we find nine

hybridized subbands, some of which are mostly localized
in the SM, whereas the others have large weight in the
superconductor [105].
For Vg < 0, the electrostatic potential confines the wave

function in the SM to a very narrow region close to the
SM/Al interface. Such confinement favors a strong hybridi-
zation of the SM and Al eigenstates, thus giving rise to
states which have large weight in both the SM and Al. Such
large hybridization is prevented in the absence of the
confining electrostatic potential due to the large mismatch
between the Fermi velocities of the two materials. The
strong confining potential due to the band offset is therefore
critical for the hybridization of the SM and Al states.
For Vg > 0, we see in Fig. 5(c) that a number of

subbands closer to the Fermi energy appear which are
not confined to the interface, and instead have appreciable
weight throughout the SM. These states have very small
WSC. Their contribution to the density can also be seen in
Fig. 4(b) in the peak of the density near the gate.
While one might naively expect that the lowest bands are

most confined to the interface and thus hybridize most
strongly, this is not reflected in the data shown in Fig. 5.
To further elucidate which bands most strongly hybridize
with the superconductor, we show the full band structure at
Vg ¼ −0.15 V in the top panel of Fig. 6. Here, color again
indicates the weight of the state in the SC; however, in

FIG. 5. Eigenstates of the Hamiltonian Eq. (4) at kx ¼ 0 for
Vg ¼ −0.15 V, Vg ¼ 0 V, and Vg ¼ 0.2 V. Panels (a)–(c) show
the electrostatic potential for reference purposes, with horizontal
lines denoting the bottom of each band below the Fermi energy.
The color scale indicates the weight in the superconductor, and in
the semiconducting part, the intensity indicates the square
modulus of the eigenstate. Panels (d)–(f) show the eigenfunctions
explicitly with the same color coding.

FIG. 6. Top: Band structure in the normal state at Vg ¼
−0.15 V. Color indicates the weight of the state in the super-
conductor. Hybridization between states is seen by the changing
color of the subbands. Bottom: Band structure of the system in
the superconducting state. The induced gap in each subband
depends on the hybridization to the superconductor. It can
clearly be seen that bands with stronger hybridization (red) are
characterized by a larger induced gap. Here we used the same
parameters as in Figs. 5(a) and 5(d).
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contrast to Fig. 5, we do not just consider kx ¼ 0. We
observe that hybridization with the superconductor may
depend strongly on kx, and in this case is generally
strongest at large kx.

C. Superconducting properties at B= 0

We now turn our attention to the situation where the Al
shell is in the superconducting state. The value of WSC at
kðnÞF correlates well with the magnitude of the induced
superconducting gap Δind for a given subband. From the
discussion of the previous section, we can then immedi-
ately conclude that different subbands will have different
values of Δind. This is illustrated in the lower panel of
Fig. 6, in which the subbands are shown for the case when
Δ0 ≠ 0, for energies of the order of Δ0. We see that bands
with smaller WSC (shown as more blue) also have smaller
Δind. The smallest value of Δind is what fixes the super-
conducting gap for the SM-SC hybrid nanowire. This again
emphasizes the importance of the strong confining potential
to increase the hybridization between the two materials and
thus a large induced gap.

Figure 7(a) shows the evolution of the DOS with Vg.
For Vg < −0.6 V, all subbands in the SM hybridize very
strongly with the Al subbands and, thus, have a large
induced SC gap. As a result, there are no subgap states
below ε ≈ 0.6Δ0. As Vg increases and the electrostatic
potential becomes less confining, additional SM subbands
become occupied for certain threshold values of Vg. As
shown in Figure 7(a), the number of subbands jumps at
Vg ≈ ð−0.6;−0.45;−0.15;−0.06; 0.03Þ V. In some cases
the additional subbands have a smaller value of WSC

resulting in a decrease of Δind. From Fig. 7(b) we can
see that this happens for the Vg threshold values of −0.6
and −0.06 V. For Vg > 0, as shown in Fig. 5(d), some of
the subbands have states that are not localized close to the
SM-SC interface and for which WSC is negligible. In this
situation Δind → 0, and the system becomes gapless.
The evolution of Δind with Vg is shown in Fig. 7(b),

together with the evolution of WSC. From this figure we
see that for Vg < −0.6 V, Δind ≈ 0.75Δ0. Furthermore,
these results indicate that the evolution of the nanowire’s
superconducting gap with Vg can be quite nontrivial and

FIG. 7. Characterization of the superconducting state at B ¼ 0, i.e., in the trivial s-wave superconducting phase, as a function of the
gate voltage Vg. (a) Density of states, (b) induced gap (black) and weight in the superconductor (green), (c) Fermi energy, (d) Fermi
momentum, (e) Fermi velocity, and (f) SC coherence length. The discontinuities correspond to transitions where bands are driven
below the chemical potential and thus become occupied [for an illustration, consider the transition between Figs. 8(a) and 8(c)]. In
panel (b), the correspondence between the magnitude of the induced gap and the hybridization between SM and SC (as measured by
the WSC) is clearly shown. In panels (c) and (d), all bands are shown in gray, while the occupied band closest to the Fermi energy is
highlighted in black.
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is closely related to WSC. In order to have Δind ∼ Δ0,
strong confining potentials (Vg < −0.6 V) are necessary.
Conversely, in the case of a positive gate voltage, there are
occupied states in the SM [Figs. 5(c)–5(f)] which are far
away from the SC and, as a result, are weakly proximitized.
Figures 7(c)–7(f) show the evolution of ϵF, kF, vF, and ξ

with Vg for the subband with the smallest induced super-
conducting gap, which determines Δind for the system. For
a fixed number of subbands, as Vg increases ϵF, kF, and vF
grow; see Figs. 7(c)–7(e). Using the values of vF and Δind
one can estimate the coherence length ξ ¼ ℏvF=ðπΔindÞ.
From Fig. 7(b), we see that change in Vg preserving the
number of occupied subbands leads to small changes in
Δind. Thus, the variations of ξ are mostly due to the changes
in vF; see Fig. 7(f). We see that, as long as the number of
subbands is constant, ξ grows with Vg and follows vF. The
discontinuities in ϵF, kF, vF, and ξ appear when the number
of occupied subbands changes; see Figs. 7(a)–7(f).

D. Superconducting properties at finite magnetic fields

We now study how the properties of the SM-SC nano-
wire depend on the presence of the external magnetic field
B aligned along the longitudinal direction of the wire. As
discussed in Sec. II, in our treatment the magnetic field
enters only via the Zeeman term. For B ∼ 1 T, the orbital
effect of the applied magnetic field is small since the SC is
only 10 nm thick and in the regime of interest the wave
functions in the SM are confined to the SM-SC interface
within a 20 nm range.
We start by investigating Zeeman splitting for the

nanowire with multisubband occupancy. The correspond-
ing band structure is shown in Fig. 8(a). Let us consider the
gate voltage such that the highest-occupied subband
(shown in blue) has small Fermi energy. The application
of a magnetic field splits the subband and, at some critical
field Bc, drives the minority subband across the Fermi level
(provided Bc is less than the critical field of the super-
conductor). This is illustrated in Fig. 8(b). At this point, the
majority subband becomes the highest-occupied band, and,
thus, many properties such as the Fermi energy, Fermi
velocity, and Fermi momentum change discontinuously.
Another scenario corresponds to Fig. 8(c), where a band

is just above the chemical potential. In this case, the gap of
the system is determined by the lower-occupied subband
(shown in green). An increasing magnetic field splits the
lowest-unoccupied band (shown in red) and eventually it
becomes occupied.
In both these cases, we end up with an odd number of

occupied subbands at large enough magnetic fields and,
thus, the nanowire can be driven into the topological
regime. However, the evolution of the gap with the
magnetic field is drastically different in these two cases.
This can seen in Fig. 9, which shows the evolution with
magnetic field of the spectral gap Eg, effective Fermi

energy for the highest-occupied subband, and correspond-
ing kF, vF, and ξ for different gate voltages close to the
threshold value Vg;t ¼ −0.427 V. This threshold value,
corresponding to the gray curves in Fig. 9, corresponds to
the gate voltage at which the relevant subband has exactly
zero effective Fermi energy. As B increases from zero the
gap Eg decreases and eventually vanishes at B ¼ Bc,
corresponding to the topological phase transition. For
B > Bc, the nanowire is driven into the spinless regime
with p-wave pairing potential. The p-wave gap exhibits a
nonmonotonic dependence on the magnetic field, and
eventually vanishes because the s-wave superconductor
becomes normal. For our parameters this occurs at
BSC ¼ 5.8 T. Note that we do not take into account orbital
effects here, so in practice Δ0 may vanish before that.
The blue family of curves in Fig. 9(a) correspond to the

case when a highest-occupied subband has a small Fermi
energy at zero field [Figs. 8(a) and 8(b)]. In that case, the
gap at zero field is already set by the band that will
eventually be split to give rise to topological superconduc-
tivity, and, thus, the gap evolves as a smooth function for
B < Bc. At B ¼ Bc, the minority subband crosses the
Fermi level, and the topological gap is opened in the
majority subband. As discussed above, the properties of
the Fermi points evolve discontinuously across the tran-
sition (panels b,c,d in Fig. 9), and the gap increases rapidly
into the topological phase (panel a in Fig. 9).
At more negative gate voltages, the situation shown in

Figs. 8(c) and 8(d) is realized, corresponding to the red
lines in Fig. 9. Here, the gap at B ¼ 0 is determined by the

(a) (b)

(d)(c)

FIG. 8. Illustration of typical band structures, and the two
different scenarios for the topological phase transition from an
even to an odd number of occupied spin subbands. Panels (a) and
(c) show the situation without magnetic field, B ¼ 0, where a
subband is slightly below [(a), one spin-degenerate Fermi point]
or above the chemical potential [(c), no Fermi points]. Upon
turning on a finite field that exceeds the distance from the bottom
of these subbands to the chemical potential, the corresponding
panel on the right [(b) and (d)] is obtained, where an odd number
of spin-split subbands is occupied.
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next occupied subband. Upon the application of a magnetic
field, the distance between the majority subband and the
chemical potential eventually becomes smaller than the gap
induced in the next-highest subband. This distance thus sets
the spectral gap. The discontinuity of the gap function can
be seen in Fig. 9(a). At B > Bc, the topological gap is
opened in the majority subband. In this case, we plot in
Fig. 9 the properties of the Fermi points only for the
subbands that eventually become topological, and thus plot
no values below the topological phase transition.
It is very interesting to notice that the size of the induced

superconducting gap for B ¼ 0 does not necessarily corre-
late with the size of the topological gap. This can be
understood from the fact that the topological gap for
B > Bc is always opened in the same band, whereas the

Δind at B ¼ 0 is opened in a different band when Vg
becomes smaller than Vg ¼ −0.427 V. As can be seen
from Fig. 9(c), the Fermi momentum kF for B > Bc, which
corresponds always to the same band, increases with Vg.
The topological gap increases with kF since the effective
Rashba field is stronger at higher momentum, allowing
the s-wave pairing to induce a larger gap. This is a very
important result because Δind at B≳ Bc sets a crucial scale
for the robustness of a topological qubit against error
sources such as thermal fluctuations, diabatic corrections,
disorder [100,106–108], etc.

E. Effective g factor

A crucial quantity to characterize the semiconductor-
superconductor system is the effective g factor of the hybrid
system. Because of the drastically different g factors in the
two materials, this will depend intricately on the wave
function hybridization between them. Furthermore, the g
factor is crucial in enabling a large and robust topological
phase, since a large g factor is necessary for the topological
phase transition to occur at a magnetic field well below the
critical value at which the Al shell is driven normal. A large
effective g is thus very helpful in achieving a sufficient
separation between these scales.
The effective g factor can be obtained from studying the

Zeeman splitting of bands at kx ¼ 0, as illustrated in Fig. 8.
In particular, since at kx ¼ 0 the spin-orbit terms in the
Hamiltonian Eq. (4) vanish, the spin splitting of the bands
at kx ¼ 0 is entirely determined by the Zeeman term. As the
change of the energy levels εðkx ¼ 0Þ is linear with the
magnetic field, the absolute value of the g factor can be
extracted as jgj ¼ 2f½dεðkx ¼ 0Þ'=ðdμBBÞg. This linear fit
for B < Bc is illustrated in Fig. 9(b) with dashed lines.
Note that when the gate voltage is such that the closest
subband to the Fermi level is unoccupied [Fig. 8(c)], the
slope near the gap closing is the same as the one at
εðkx ¼ 0Þ, allowing for a reliable extraction of the g factor
from the tunneling conductance measurements [68]. This is
shown in Fig. 9(a) by the dashed lines.
In Fig. 10 we study the dependence of the extracted g

factor on the applied gate voltage in the vicinity of the
threshold values at which the number of subbands change
(see Fig. 7). As expected, we find every subband to be
characterized by an almost constant g factor, with signifi-
cant changes occurring only at transitions between bands.
When the hybridization between semi- and superconductor
is weak, the g factor is close to the bare semiconductor
value jgbareSM j ¼ 15. Conversely, when the voltage is very
negative (the value from Fig. 7 is written in every panel)
and the hybridization between semi- and superconductor is
strong, the g factor is almost as small as the bare super-
conducting g factor jgbareSM j ¼ 2.
Additional information can be extracted from the ratio

of the induced gap to the critical field, shown in Figs. 10(b),
10(d), 10(f), 10(h), and 10(j). This quantity is easily

(a)

(b)

(c) (d)

FIG. 9. The evolution of the system parameters as a function of
a magnetic field B. Estimates for the (a) gap, (b) absolute value
of the effective Fermi level of the subband jεðkx ¼ 0Þj (where
kx ¼ 0 is the location of the band bottom), (c) Fermi momentum,
and (d) Fermi velocity as a function of magnetic field. Colors
correspond to different gate voltages: for blue lines, the gate
voltage is more positive, leading to a situation as sketched in
Figs. 8(a) and 8(b). Red lines, on the other hand, have a more
strongly negative gate voltage, thus leading to the situation of
Figs. 8(c) and 8(d). Gray color corresponds to the threshold value
Vg ¼ −0.427 V, at which the subband is characterized by a
vanishing effective chemical potential.
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accessible in experiments, and has been used in the
experimental literature as a proxy for the g factor [68].
Our results clearly show that unlike the g factor, this quantity
has a strong dependence on gate voltage over relatively small
gate voltage variations. In particular, a resonant structure
appears with a peak that corresponds to the gate voltage
being tuned to the threshold value at which the subband
crosses the effective chemical potential. Only at this point
does this quantity reach the values of the effective g factor
shown in Figs. 10(a), 10(c), 10(e), 10(g), and 10(i).
Figure 11(a) shows the value of g for different topologi-

cal regions (see also the discussion in Sec. III F). We see

that as Vg becomes more negative the g factor becomes
smaller and approaches the value of g in the SC. As stated
above, this is due to the fact that as Vg becomes more
negative the hybridization between SM and SC states
becomes stronger, as clearly shown by the evolution of
WSC; see Fig. 11(b). Larger negative values of Vg create an
electrostatic potential that more strongly confines the SM
states at the SM-SC interface. The tighter confinement
results in a stronger hybridization between SM and SC
states. Figure 11(c) summarizes the important relation
between strength of the hybridization between SM and
SC states and the g factor by showing the dependence of jgj
onWSC. We see that qualitatively g scales linearly withWSC.

F. Topological phase diagram

Figure 12(a) shows the topological phase diagram in the
ðVg; BÞ plane. This is one of the most important results of
this work: it relates the nature of the superconducting state
of the quasi-1D hybrid nanowire to the experimentally
relevant and tunable quantities—the gate voltage and the

(a)

(b)

(c)

FIG. 11. Gate voltage dependence of (a) the absolute value of
effective g factor and (b) the weight in superconductor. Panel
(c) relates jgj to the weight in the superconductor WSC. Dots
represent typical values for the highest-occupied band at a given
gate voltage. The dashed horizontal values are the absolute values
of the bare g factor in the semiconductor (red) and super-
conductor (green). When the coupling to the superconductor is
weak, as indicated by a small weight of the wave functions in the
SC, the g factor is close to the bare InAs value. The opposite limit
occurs in the strongly hybridized regime at more negative gate
voltages.

(a)

(c)

(e)

(g)

(i) (j)

(h)

(f)

(d)

(b)

FIG. 10. Absolute value of g factor (left-hand column) and ratio
of the induced gap to the critical magnetic field 2Δ=ðμBBcÞ
(right-hand column) as a function of gate voltage in the vicinity of
threshold gate voltage values Vg ¼ −0.07 (a),(b), −0.15 (c),(d),
−0.45 (e),(f), −0.6 (g),(h), −2.3 (i),(j) at which the number of
subbands change in the system. The red dashed line is the
absolute value of bare semiconductor g factor jgbareSM j.
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external magnetic field—rather than more abstract quan-
tities such as the Fermi energy of the subbands and the
Zeeman splitting, which are dependent on applied electric
field. As discussed above, the relation between Vg and the
parameters characterizing the nanowire band structure,
such as the subbands’ Fermi energy and induced super-
conducting gap, is highly nontrivial given the nonlinear
nature of the SP problem and the presence of multiple
subbands. For this reason, simplified models in which the
subband chemical potential is assumed to be directly
proportional to Vg in general cannot be used to obtain a
reliable phase diagram in the ðVg; BÞ plane. Similarly, we

have shown that for the g factor we cannot take the bare
value of the SM. One qualitative feature that emerges from
the results shown in Fig. 12(a) is how the shape and size of
the topological regions depend on Vg. We see that for very
large negative Vg the critical magnetic field is higher than
that for small negative values of Vg. This is due to the fact
that the hybridization of the SM’s and SC’s states is
stronger for larger negative Vg and therefore the effective
magnitude of g is much smaller than gbareSM , causing an
increase of the critical field.
The topological phase diagram can be obtained by

calculating the topological index M ∈ Z2 (Majorana num-
ber) [12,87,103]:

M ¼ sgnfPf½Bðkx ¼ 0Þ'gsgnfPf½Bðkx ¼ π=aÞ'g; ð8Þ

where BðkxÞ is an antisymmetric matrix which defines
the Hamiltonian of the system in the Majorana basis. The
negative (positive) sign ofM corresponds to a topologically
trivial (nontrivial) phase. The latter supports Majorana zero
modes at the ends of the nanowire. In the continuum limit,
the lattice spacing a → 0, and the sign of Pf½Bðkx → ∞Þ'
is fixed. Thus, the topological quantum phase transition
corresponds to a change of sgnfPf½Bðkx ¼ 0Þ'g. Note that
the topological phase transition in this case is accompanied
by a vanishing quasiparticle gap at kx ¼ 0, which provides
another way of determining the phase boundary.
It is illuminating to compare the phase diagram of

Fig. 12(a) with previous studies [87,103]. Adapting the
results of Refs. [27,28,103], the critical magnetic field for
the topological transition is given by

Bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϵðkx ¼ 0Þ'2 þ Δ2

p

jgj
; ð9Þ

where ϵðkx ¼ 0Þ defines the position of the band bottom at
kx ¼ 0 relative to the Fermi energy in the superconductor
and g is the effective g factor. As follows from the
discussion above, the effective g factor can be obtained
by calculating Zeeman splitting at kx ¼ 0.
Having obtained the dependence of ϵðkx ¼ 0Þ, g, and Δ

on Vg, one can draw the boundaries in the ðVg; BÞ plane of
the topological phase diagram using Eq. (9). These boun-
daries are shown in green in Figs. 13(a), 13(c), and 13(e).
We see that they exactly match the boundaries obtained
by identifying the value of B, Bc, where the gap is closing,
Δind ¼ 0. In particular, Eq. (9) gives the correct boundaries
if the renormalization of the g factor is taken into account.
On the other hand, if in Eq. (9) we use the bare SM g
factor, Eq. (9) gives incorrect boundaries, shown in red in
Figs. 13(a), 13(c), and 13(e). The boundaries obtained
using the bare SM g factor overestimate the size of the
topological region, especially when Vg is strongly negative,
as shown in Fig. 13(e). As discussed above, this is due to
the fact that the value of the g factor, in the strong-coupling

FIG. 12. (a) Topological phase diagram and magnitude of the
spectral gap over a range of gate voltages from zero to very
strongly negative. Clearly, the gap at zero field is largest for
negative gate voltages where hybridization with the Al shell is
strongest. The boundaries of the topological phase are marked
with solid black lines. Dependence of the (b) gap normalized to
the bare Al gap Eg=Δ0 and estimates for (c) Fermi velocity and
(d) coherence length as a function of magnetic field for the gate
voltages indicated by dashed lines in (a).
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regime, is strongly renormalized by the hybridization
between the SM and SC states. Figures 13(b), 13(d),
and 13(f) show the band structure of the SM-SC nanowire
close to the Fermi energy when Δ0 → 0 for the appropriate
values of Vg. We see that for very negative values of Vg,
Fig. 13(f), the SM states are very strongly hybridized with
the SC states. This result is consistent with the fact that for
this case g is much smaller than gSM and, therefore, the
topological region is much smaller that we would have
obtained assuming g ¼ gSM.
Figures 12(b)–12(d) show the dependence of the gap

[Fig. 12(b)], Fermi velocity [Fig. 12(c)], and coherence
length [Fig. 12(d)] on the magnetic field, for B > Bc, for
different domes in the topological phase diagram shown
in Fig. 12(a). To obtain these figures we use the represen-
tative gate voltages indicated by the white dashed lines in
Fig. 12(a). For fixed magnetic field, the gap decreases with
the gate voltage while the Fermi velocity increases. As a
consequence, the coherence length increases. The results of
Fig. 12(d) show that when the topological gap is maximal, ξ
has values in the 100–300 nm range, and that ξ grows
linearly with B for B > Bc. The growth of ξ with B is
slower for more negative gate voltages, a reflection of the
fact that for larger negative gate voltages the effective g
factor is smaller due to the stronger hybridization of the
SM’s and SC’s states. The results of Fig. 12(d) are

important for the design of Majorana-based qubits since
their topological protection relies on the exponentially
small splitting of Majorana zero modes which, in turn,
strongly depends on the coherence length.

G. Effect of disorder in SC-SM heterostructures

Disorder is ubiquitous in solid-state systems and has a
strong impact on the physical properties of proximitized
nanowires. It has been shown that disorder in the SM and at
the SM-SC interface is detrimental to the topological phase
[109–118]. However, in the MBE-grown SC-SM hetero-
structures [9,56] disorder effects are minimized resulting in
high-quality SMs as well as SM-SC interfaces. The SC
(i.e., Al) is also nominally of high quality but its outer
surface is covered by an amorphous oxide layer; see
Fig. 14. Therefore, the scattering from the outer boundary
randomizes the motion of quasiparticles in the SC. Because
of the large effective mass mismatch and the conservation
of the momentum at SM-SC interface, disorder in the SC is
not expected to interfere with the observation and manipu-
lation of MZMs [92,112,118]. Nevertheless, as we show it
can strongly affect key quantities of the proximitized
nanowire, such as Δind and the critical field Bc, as well
as their dependence on the external gate voltage.
We model disorder by adding the random potential VD to

the Hamiltonian Eq. (1). Because of the computational
complexity of the problem, we consider here the disorder
potential VDðz; yÞ (i.e., homogeneous along the wire). Such
potential hybridizes different y and z subbands, which
effectively increases density of states in the SC. In contrast
to Eq. (4) the modes in the y direction are not separable
anymore, and we have to resort to a numerical solution of
the full Hamiltonian, leading to a much greater numerical
complexity. We calculate results for a given disorder
realization and then average physical observables over
approximately 25 disorder realizations.
We model the amorphous oxide layer in the super-

conductor by adding a disorder potential within lz ¼ 2 nm
from the outer surface of the SC; see Fig. 14. We assume

FIG. 14. (a) SM-SC heterostructure in the slab geometry
in the presence of disorder on the surface of superconductor
(not to scale). (b) Square modulus of the eigenstate in the
presence of disorder highlighting the enhanced scattering in
the superconductor.

(a) (b)

(c) (d)

(e) (f)

FIG. 13. Phase diagram (a),(c),(e) and band structure (b),(d),(f)
in the vicinity of threshold gate voltages, corresponding to the
change in the number of subbands: Vg ¼ −0.15 (a),(b); Vg ¼
−0.6 (c),(d); Vg ¼ −2.3 (e),(f). Black dots in the left-hand panels
correspond to the numerically calculated phase boundary. Red
and green curves in left-hand panels are the estimates obtained
using the standard relation Eq. (9) and the bare SM’s g factor
for the red curves and the renormalized g factor, Fig. 10, for the
green ones.
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the disorder potential to have zero average and to be
spatially uncorrelated:

⟪VD⟫ ¼ 0; ⟪VDðrÞVDðr0Þ⟫ ¼ K0nimpδðr − r0Þ: ð10Þ

Here, ⟪ ( ( (⟫ denotes averaging over disorder realizations,
K0 parametrizes the disorder strength, and nimp corresponds
to the density of impurities. Considering the finite spatial
resolution in the numerical calculation and the uniform box
distribution of the disorder with the amplitude UD, K0 is
related toUD as δrU2

D=3 ¼ K0nimp, where δr is the volume
of a single cell of the spatial discretization (see Table I),
that we set to be uniform in the region where the disorder
is located. We vary UD in the parameter range 0–1 eV,
which corresponds to the effective mean-free length larger
than 10 nm.
One of the main effects of the disorder in the SC is to

break the conservation of the momentum and to induce
broadening of the SC subbands, which effectively increases
the number of superconducting subbands hybridizing with
a given SM mode. This effect is shown in Fig. 14(b) where
we plot the wave function probability density: the wave
function probability in the SC is random, which corre-
sponds to chaotic motion of quasiparticles, whereas the one
in the SM preserves periodicity in the y direction. One may
notice that disorder leads to an enhancement of WSC, as
shown in Fig. 15(a). As UD increases, more of the SM’s
subbands couple to the SC’s subbands with comparable

strength and therefore changes of Vg that “push” different
SM’s subbands to the Fermi level do not cause sudden
jumps ofWSC in contrast to the clean case. The behavior of
WSC versus Vg correlates with the dependence of Δind on
Vg, as shown in Fig. 15(b). Similar to the clean case (see
Fig. 7) there is a one-to-one correspondence between the
weight in SC and the induced gap. As follows from Fig. 15,
the disorder in the SC increases the range of values of Vg
for which the SC-SM heterostructure is in the strong
tunneling regime, which agrees qualitatively with recent
experiments [68,98].
As discussed in the previous sections, a large WSC

implies not only a large Δind but also a reduced g factor.
Since the presence of disorder increases WSC (all other
parameters being equal), the reduction of the g factor is also
enhanced. From Eq. (9), we see that both the increase of
Δind and the reduction of jgj will cause an increase of the
minimal critical magnetic field for the topological phase
transition. Considering that the disorder in the SC does not
affect directly the SM’s subbands, in particular their energy
at kx ¼ 0, we conclude that the dominant effect of the
disorder in the SC on the topological phase diagram is to
cause an increase of Bc. Therefore, in the presence of
disorder the topological regions of Fig. 12(a) move towards
larger values of B. The shift in Vg of the boundaries of the
topological phase appears to be negligible.
To study this more quantitatively, we determine the

minimal critical field for a topological “dome” as previ-
ously shown in Fig. 12; we denote this minimal field as B#

c.
(a)

(b)

FIG. 15. (a) Weight in the superconductor and (b) induced
gap as a function of the gate voltage for a range of disorder
strengths UD ¼ 0–1 eV averaged over 25 disorder realizations.
The presence of disorder increases the induced gap.

FIG. 16. Topological phase phase diagram in the presence of
disorder. Plotted are the positions of the local minima B#

c of
critical magnetic fields in B, Vg plane. Empty dots corresponds to
separate disorder realizations, filled symbols are disorder aver-
ages with the corresponding error bars. Increasing disorder
strength leads to larger critical fields.
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Figure 16 shows B#
c for different values of UD. The open

symbols in Fig. 16 represent the values of B#
c for different

disorder realizations whereas the solid symbols correspond
to the values of B#

c averaged over 25 disorder realizations.
These results clearly demonstrate that as UD increases B#

c
increases as well, mostly due to a decrease of g, and results
in a reduction of the area of the topological regions in
the ðB; VgÞ plane. For very large disorder strengths and
negative gate voltages, the effective g factor becomes so
small that B#

c becomes larger than the critical field of Al.
We conclude this section by summarizing that the main

effect of disorder in SC is to increase the coupling between
SM and SC, resulting in larger induced gap and critical
fields to cross the topological phase transition.

IV. SUMMARY AND CONCLUSIONS

We study properties of SM-SC nanowires in the
presence of strong external electric fields. Our method
is based on self-consistent Schrödinger-Poisson calcula-
tions which treat the semiconductor and the supercon-
ductor on equal footing. This approach allows one to take
into account several semiconductor subbands which,
we believe, are present in current experimental devices.
We find that the treatment of the SM and SC at the same
level is necessary to describe the strong-coupling regime
characteristic to the high-quality epitaxial nanowires [56].
Such hybrid nanowires are very promising for the topo-
logical quantum computing applications as they exhibit
large proximity-induced gaps and very low subgap con-
ductance [55,60,64].
One of the most important results of our work is to

provide an insight regarding the necessary conditions for
achieving the strong-coupling regime in proximitized nano-
wires. We find that one of the key ingredients is the
presence of an accumulation layer at the interface between
the SM and the SC. The presence of an accumulation layer
implies a strong confinement of the semiconductor wave
function close to the SM-SC interface. Without such
confinement, the significant mismatch between the Fermi
velocities of SM and SC would significantly reduce the
induced gap. This conclusion has recently been supported
by angle-resolved photoemission spectroscopy experi-
ments that have shown that in epitaxial InAs/Al systems
the band offset W is negative and therefore an electron
accumulation layer is present.
We investigate the effect of an external electric field

which can be used to modify the confining potential and,
thus, modify properties of electronic states in SM-SC
devices. We find that external electric field can be used
to change the number of subbands in the semiconductor,
tunneling rate, induced gap, magnitude of the effective g
factor, coherence length ξ, etc. Our results show that the
relation between Vg and the quantities characterizing the
electronic state of SM-SC quasi-1D nanowires is not trivial.
The understanding of the interplay of Vg, number of

subbands, and electronic properties is one of the most
important results of our work.
We obtain the topological phase diagram as a function of

the gate voltage and magnetic field B. Previous works
calculated the topological phase diagram in terms of
phenomenological parameters such as effective chemical
potential. Our work is the first to present a phase diagram
in terms of Vg, the experimentally relevant and tunable
quantity, instead of the chemical potential. We find that in
the strong-coupling regime the renormalization of the g
factor due to the strong hybridization between the SM’s and
the SC’s states can significantly modify the topological
phase diagram. For typical setups, the g of the SC is smaller
(in absolute value) than the SM’s g factor, and so the strong
hybridization reduces the g factor causing a decrease in
the ðVg; BÞ plane of the region where the system is in the
topological phase.
Finally, we take into account the effect of disorder.

There is a large body of papers investigating the effect of
the disorder in the semiconductor [31,87,111,119–123]
and at the interface [124] concluding that disorder leads to
the subgap density of states (i.e., states below the induced
gap). However, given the observation of a very small
subgap density of states in recent experiments on high-
quality proximitized nanowires [55,60,62,64], we believe
that the semiconductor, as well as the SC-SM interface, is
quite clean. The situation with Al is less clear since the
presence of the native oxide covering Al may lead to
significant impurity scattering. The disorder in the super-
conductor relaxes the constraint on momentum conserva-
tion and enhances the induced SC gap and the critical
field. Once again, the optimization of the tunneling rate
between SM-SC is very important [112,118].
Our work has important implications for current and

future experiments aiming to realize Majorana-based
topological qubits using SM-SC heterostructures as it
allows one to optimize Majorana devices by tuning key
parameters, Δ, g, and ξ with gates. Our results show that
in the strong coupling the renormalization of g can be
quite significant, increasing the minimal magnetic
field necessary to drive the system into the topological
phase. Thus, there is a sweet spot, and it is beneficial to
operate in the intermediate-coupling regime. This is
critical information to design experiments aimed at
realizing MZMs.
Finally, we discuss some limitations of our model. First,

the disorder is two dimensional, leading to a qualitatively
similar picture as in the disorder-free case. Impurities in
the SC may induce subgap states [112,116–118] that can be
captured in a fully three-dimensional simulation. Another
limitation of our model is the lack of orbital effects due
to the magnetic field. Because of the strong geometry
dependence of the orbital effect [97,125], however, a
careful treatment of it needs to go beyond the slab model
discussed here [98,126].
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Finally, we emphasize that, although in this work we
focus on InAs/Al hybrid nanowires, the Schrödinger-
Poisson approach proposed in this work can be used to
study other heterostructures such as InSb/Al nanowires,
two-dimensional SM-SC heterostructure, and the quasi-1D
channels created by electrostatic confinement in such
structures.
Recently, three other papers on a similar topic

appeared [127–129]. These papers, as ours, present
numerical approaches aimed at a more quantitative
description of semiconductor-superconductor heterostruc-
tures. Reference [127] studies the electrostatic environ-
ment of nanowires in the weak-coupling regime.
Reference [128] discusses the electrostatic environment
in the presence of metallic Al and focuses on the normal-
state band structure of the quasi-one-dimensional hetero-
structure. Reference [129] studies the renormalization of
the semiconductor band structure by the proximity to the
bulk superconductor in the strong-coupling regime
neglecting electrostatic effects.
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