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Microwave-tunable diode effect in asymmetric SQUIDs with topological Josephson junctions
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In superconducting systems in which inversion and time-reversal symmetry are simultaneously broken the
critical current for positive and negative current bias can be different. For superconducting systems formed by
Josephson junctions (JJs) this effect is termed Josephson diode effect. In this paper, we study the Josephson diode
effect for a superconducting quantum interference device (SQUID) formed by a topological JJ with a 4π -periodic
current-phase relationship and a topologically trivial JJ. We show how the fractional Josephson effect manifests
in the Josephson diode effect with the application of a magnetic field and how tuning properties of the trivial
SQUID arm can lead to diode polarity switching. We then investigate the ac response and show that the polarity
of the diode effect can be tuned by varying the ac power and discuss differences between the ac diode effect of
asymmetric SQUIDs with no topological JJ and SQUIDs in which one JJ is topological.
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I. INTRODUCTION

Recently there has been a great deal of activity investigat-
ing nonreciprocal effects and supercurrent rectification in su-
perconductors [1–16] and Josephson junctions (JJs) [17–32].
Conventional diodes, such as p-n junctions, have electrical
resistance that depends on the direction of current and have
numerous applications in computing, logic, and detection. The
superconducting diode effect is characterized by a difference
in forward and reverse critical currents I+ and I− where the
current range between I+ and I− can be used to achieve super-
current rectification. This nonreciprocal supercurrent develops
due to simultaneous breaking of time-reversal and inversion
symmetry [29,33–35]. Despite superconducting diodes having
been discussed long ago [17,36–40], there has been a revival
of interest, in part, due to signatures of finite-momentum
Cooper pairing in helical superconductors [8,26,30] associ-
ated with the Josephson diode effect (JDE). Superconducting
diodes can also be used as passive on-chip gyrators, circula-
tors, and memory in cryogenic applications [41].

The fractional Josephson effect [42,43] describes a
4π -periodic current-phase relationship (CPR) in JJs originally
associated with topological superconductivity. Topological
superconductivity has made important strides over the past
decade since theoretical proposals to create topological
superconductors for use in quantum computing have become
feasible to realize [44–50], although their discovery is still
inconclusive [51–65]. Despite this, the fractional Josephson
effect is well documented in both topological [19,66–69] and
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trivial JJs [70]. Furthermore, planar JJs are a suitable platform
to realize a large JDE since both time-reversal and inversion
symmetry can be readily and controllably broken [71,72].

In this paper we study the dc and ac response of asymmet-
ric SQUIDs [73]. Compared to previous studies we take into
account effects due to the SQUID’s inductance, the presence
of an ac bias, and the role that a non-negligible fractional,
4π , component of the CPR for one of the JJ forming SQUIDs
has on the SQUID’s diode effect. We call a SQUID in which
one JJ’s CPR is 4π a 2π -4π SQUID. Recent experiments
have shown that high-transparency wide JJs can also have
a 4π -periodic component of the current-phase relationship
[70]. Our approach and results do not depend on the origin
of the 4π -periodic component and therefore apply directly
also to SQUIDs in which one JJ is wide and very transparent,
as the one studied in Ref. [70]. First, we treat the problem
with an analytic model that goes beyond the minimal models
considered before [72,74,75]. We show that the dc response of
2π -4π SQUIDs exhibits the JDE and that the diode polarity is
reversible with asymmetry in the normal resistance of the two
SQUID arms. We compare the JDE of a topological SQUID to
a topologically trivial one and find that, despite both SQUIDs
showing comparable diode efficiencies, topological SQUIDs
are of higher practical quality given they have a larger rec-
tification current window �Ic coinciding with large diode
efficiency making them more robust to, e.g., stray magnetic
fields. We also show the JDE can be switched and enhanced
by an ac drive allowing for a microwave-controlled diode
effect. By including the inductance’s effects we are able to
properly characterize the ac response of the SQUID and show
that the strength and sign of the diode effect depend on the
ac power, an additional contribution toward the understanding
of the physics of asymmetric SQUIDs. Lastly, we compare
our analytic results with numerical simulations of the ac re-
sponse of trivial asymmetric and 2π -4π SQUIDs and find
good agreement between the two approaches.

2643-1564/2024/6(2)/023011(12) 023011-1 Published by the American Physical Society

https://orcid.org/0000-0002-8162-9403
https://orcid.org/0000-0002-5629-5296
https://orcid.org/0000-0002-2647-3610
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023011&domain=pdf&date_stamp=2024-04-02
https://doi.org/10.1103/PhysRevResearch.6.023011
https://creativecommons.org/licenses/by/4.0/


CUOZZO, PAN, SHABANI, AND ROSSI PHYSICAL REVIEW RESEARCH 6, 023011 (2024)

FIG. 1. (a) Circuit diagram of a 2π -4π SQUID hosting Majorana zero modes in one arm. (b) SQUID oscillations for I+ (solid) and I−
(dashed) with βL = 0. Skewed SQUID parameters are a1 = 1 and a2 = 0.9 = 1 − c2 and (c) corresponding critical current difference for an
asymmetric SQUID with a1 = 1, b2 = W4π = 1 − a2. ηc dependence on � and βL

1+R21
for a1 = 1 and (d)W4π = 1, (e) W4π = 0.5, (f) W4π = 0.1,

(g) a2 = 0.8, b2 = 0.1 = c2, and (h) a2 = 0.9 = 1 − c2 (skewed SQUID).

II. MODEL

To model the dynamics of the JJs we use the resistively
shunted junction model, IB = VJ

Rn
+ Is, where a current bias

IB across a JJ is split into a resistive channel associated with
quasiparticle current with normal resistance Rn and a super-
current channel Is. Here we ignore charging effects associated
with a capacitive channel. It is known that the Coulomb
energy EC can compete with the Josephson energy EJ in a
2π -4π SQUID and lead to a gap in the midgap spectrum
[76] associated with quantum phase slips, reducing the 4π

periodicity to 2π . Here we assume EJ > EC for both SQUID
arms, corresponding to wide topological JJs [48,49].

We can describe the fluxoid quantization condition with
s-wave superconducting electrodes for the SQUID shown in
Fig. 1(a). If the superconducting electrodes are thicker than
the London penetration depth and the arms have equal in-
ductance then we have the following current conservation
and flux quantization conditions: IB = I1 + I2, φ2 − φ1 =
2π
�0

�tot (mod2π ) where �tot = L(I1 − I2) + � and Ik = VJ,k

Rn,k
+

Is,k, k = 1, 2. Here I1 and I2 are the currents in each of
the SQUID arms, φ1 and φ2 are the gauge-invariant phase
differences across each of the SQUID arms, � is the total
external magnetic flux through the SQUID, L is the inductance
associated with the screening flux, �0 denotes the supercon-
ducting magnetic flux quantum h/2e, and VJ,k and Is,k are
the potential difference and the supercurrent of the kth arm,
respectively. In this paper, we define an asymmetric SQUID
as a SQUID with at least one of the following conditions:
Is,1(φ) �= Is,2(φ), Ic,1 �= Ic,2, or Rn,1 �= Rn,2. Using the Joseph-
son relation VJ,k = (h̄/2e)φ̇k , we can combine these equations
and solve for two coupled differential equations in terms of
the average phase φA = (φ1 + φ2)/2, and phase difference is
� = (φ2 − φ1)/2π :

dφA

dτ
= 1 + R21

4
iB − is,1 + �21is,2

2
+ 1 − R21

4βL
(� − �̂), (1)

d�

dτ
= R21 − 1

4π
iB + is,1 − �21is,2

2π
− 1 + R21

4πβL
(� − �̂), (2)

where τ = (2π Ic,1Rn,1/�0)t is a dimensionless time, R21 =
Rn,2/Rn,1, �21 = R21Ic,2/Ic,1, βL = Ic,1L/�0, is,k = Is,k/Ic,1,
and �̂ = �/�0.

Evidence for nonsinusoidal terms contributing to a
skewed CPR have been observed in past experiments
[67,69,70,77–79]. To account for the presence of both skewed
and topological CPRs, we assume a CPR with π -, 2π -, and
4π -periodic channels:

is,1(φ1) = a1 sin(φ1) + b1 sin

(
φ1

2

)
+ c1 sin(2φ1), (3)

�21is,2(φ2) = a2 sin(φ2) + b2 sin

(
φ2

2

)
+ c2 sin(2φ2). (4)

The 2π -periodic term of the current-phase relationship is stan-
dard for a JJ, the 4π -periodic contribution is present either
from the topological character of the JJ or from Landau-Zener
transitions in high-transparency JJs, and the π -periodic term
is the leading term that needs to be included to describe JJs
with good transparency. For a ballistic short junction with a
mode with transmission τ , the CPR is described by Is(φ) ∝
sin φ/

√
1 − τ sin2(φ/2), where 0 � τ � 1 and φ is the phase

across the junction. A Fourier expansion of the CPR to the
second harmonic gives Is(φ) ≈ I1 sin(φ) + I2 sin(2φ), where
I1 > I2 and I2/I1 depends on τ . For realistic values of τ , we
have I2/I1 � 0.1. With this in mind, we constrain the ampli-
tude ci � 0.1 in our calculations. We assume a1 + b1 + c1 =
1 and a2 + b2 + c2 = �21 throughout the paper for simplic-
ity. Furthermore, we assume �21 = 1 throughout the paper,
which implies the gaps of the junctions in the SQUID are
the same. Following previous work [80], we can reduce the
SQUID dynamical equations to a single equation of motion
by considering βL, |1 − R21| � 1. Retaining terms linear in
βL, the SQUID dynamics are determined by the average phase
φA:

dφA

dτ
= iB

2
− ĩs(φA) + πβL(c1 − c2)2

2(1 + R21)
sin(4π�̂), (5)
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where

ĩs(φA) =
6∑

m=1

[
xm sin

(
m

φA

2

)
+ ym cos

(
m

φA

2

)]

+ x8 sin (4φA) + y8 cos (4φA), (6)

where xm and ym are coefficients that depend on �̂, ai, bi, ci,
and βL/(1 + R21) [81]. The diode efficiency ηc ≡ (I+ − I−)/
(I+ + I−) is often used to characterize superconducting diodes
where the critical current I+ (−I−) corresponds to positive
(negative) current bias. In an asymmetric SQUID, the broken
chiral symmetry is due to different properties in the two arms
of the SQUID, and the broken time-reversal symmetry is due
to a magnetic flux threading the SQUID ring. For instance,
in the topologically trivial asymmetric SQUID in Ref. [74],
the diode is only present if an anomalous supercurrent exists
at zero phase bias. This anomalous current breaks the chiral
symmetry of the SQUID. We extract I± from Eq. (5) where
the last two terms describe an effective CPR. First, it is worth
noting that the effect of screening enters the dynamics via the
term βL/(1 + R21), suggesting an increase of R21 is similar
to a decrease of βL. The presence of R21 in the effective CPR
of the SQUID can be traced back to SQUID inductance con-
tribution to the total magnetic flux where the currents I1 and
I2 are currents which include both the supercurrent channels
and normal channels. Second, the last term in Eq. (5) is inde-
pendent of φA but odd in �̂. This term applies an overall shift
in the CPR which suggests a bipartite form of the diode effect
I+ − I− = �ĩs,c + πβL (c1−c2 )2

2(1+R21 ) sin(4π�̂), where the former

term �ĩs,c = max(ĩs) + min(ĩs) is determined by Eq. (6) and
the latter is φA independent and associated with the screening
current of imbalanced π channels. In general, a SQUID with
asymmetric skewed CPRs can expect additional contributions
to the screening current term, and such shifts to the CPR can
contribute to anomalous scenarios such as |ηc| > 1.

III. RESULTS

We start by considering two types of SQUIDs. The first
is a 2π -4π SQUID with 4π supercurrent in the topological
arm characterized by the parameter W4π = b2 = 1 − a2. The
second is a trivial asymmetric SQUID (skewed SQUID) with
a1 = 1 and a2 = 0.9 = 1 − c2 (b1 = 0 = b2).

The dc responses of the SQUIDs are shown in Fig. 1(b).
We notice that Ic is largest when � = �0/4 for the 2π -4π

SQUID. To understand this, recall that for a trivial SQUID
with sinusoidal CPRs the currents are maximized at φmax =
π/2 and the two arms of the SQUID can simultaneously have
that phase φmax if the magnetic flux is an integer multiple of
the magnetic flux quantum. Now, for the 2π -4π SQUID, if
the trivial arm has φmax,2π = π/2 and the nontrivial arm has
φmax,4π = π , then it follows from the same argument that the
maximum should occur at �ext = �0/4 [72,82].

In Fig. 1(c), we present the difference in critical currents
�Ic = I+ − I− for the 2π -4π SQUID and trivial asymmetric
SQUID considered in Fig. 1(b). A clear Josephson diode ef-
fect develops at � �= n�0/2 (n ∈ Z). Note, �Ic of the 2π -4π

SQUID exceeds that of the trivial asymmetric SQUID until
W4π < 0.3.

We present ηc dependence on � and screening βL/(1 +
R21) for 2π -4π SQUIDs in Figs. 1(d)–1(f). The diode ef-
ficiency of the 2π -4π SQUID shown in Fig. 1(d) shows
extrema for βL/(1 + R21) = 0 and diode polarity switching
for large screening. As W4π is decreased from unity [Figs. 1(e)
and 1(f)], ηc varies but the tunability of the diode polarity
persists. Furthermore, as W4π decreases, the diode efficiency
is generally smaller.

For a SQUID nearly saturated with trivial supercurrent
(a1 = 1, a2 = 0.8, and b2 = c2 = 0.1), the regime of polarity
switching with βL is pushed beyond our approximation of
βL � 1 [Fig. 1(g)] and closely resembles the trivial asym-
metric SQUID dc response [Fig. 1(h)]. In the case of a trivial
symmetric SQUID where a1 = 1 = a2, the diode efficiency
ηc = 0 regardless of the value of � and R21 [74]; this also
holds for βL > 0. The source of the diode polarity switch-
ing with βL/(1 + R21) is higher harmonic contributions to
the CPR associated with the screening current (βL > 0). The
inclusion of βL and R21 is one of our main analytic results.
We also see that ηc of the trivial asymmetric SQUID can
be larger than ηc of the 2π -4π SQUID. The reason for this
is that ηc approaches unity when one of the critical currents
approaches zero. Typically, this indicates an ideal diode, but
if the nonzero critical current is also extremely small the
practicality of such a diode is diminished since the current
window for supercurrent rectification is also small. Using
|�Ic| as an additional quality factor we find that the 2π -4π

SQUID diode outperforms the trivial asymmetric SQUID (see
Appendix D and Fig. 6). The smallness of Ic at half flux is also
the reason for the presence of strong variations and polarity
switchings of ηc when �/�0 ≈ 1/2. Such variations are phys-
ically uninteresting. In the remainder when discussing polarity
switchings of ηc we refer to switchings at values of �/�0

away from 1/2. We discuss ηc in the remainder of the paper
for simplicity and comparison with the available literature, but
we caution against an overemphasis on optimizing ηc without
consideration of the operational current range �Ic. Our results
also suggest the control of the diode polarity with R21 could
be used as a signature of the fractional Josephson effect.

To study the ac response of asymmetric SQUIDs we
first consider the voltage-biased case, since in this regime
we can obtain analytical results. Assuming V (t ) = VDC +
VAC cos(2π f t ), from the Josephson relation h̄dφA/dt = 2eV ,
we obtain φA(t ) = φ0 + ω0t + z sin(2π f t ) where φ0 is an
arbitrary integration constant, z = 2eVAC/(h f ), and ω0 =
2eVDC/h̄. Using Eqs. (5) and (6) we can obtain the Ī − VDC,
with Ī being the time-averaged current, characteristic of the
SQUID. In the remainder we focus on the behavior of the
current when VDC = 0.

Figures 2(a) and 2(b) show the SQUID critical current
Iavg ≡ I+ + I− as a function of � and VAC for βL/(1 + R21) =
0 and 0.125, respectively, for the skewed SQUID. In the
absence of screening, Iavg has a high degree of symmetry in
(�, VAC) space defined by lines of Iavg = 0 at � = �0/2 and
VAC ≈ 2.5 h f /2e. With screening, lines of Iavg = 0 become
broken and distorted. To see how this translates to the JDE, we
present the corresponding diode efficiency in Figs. 2(c) and
2(d). We immediately notice the symmetry of Iavg is preserved
in ηc, particularly where Iavg ≈ 0. In fact, ηc has extrema near
Iavg ≈ 0 as a consequence of I± → 0 and I∓ > 0, as discussed
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(a) (b)

(c) (d)

FIG. 2. AC power dependence of Ic and ηc for the skewed
SQUID with (a), (c) βL

1+R21
= 0 and (b), (d) βL

1+R21
= 0.125.

earlier. We observe periodic diode polarity switching with
increasing microwave power VAC for fixed �.

We can compare the ac response of the skewed SQUID of
Fig. 2 with a 2π -4π SQUID shown in Fig. 3. Figures 3(a) and
3(b) show the ac response for βL/(1 + R21) = 0 and 0.125,
respectively. We notice the extrema of ηc occur further away
from � = �0/2 compared to a trivial asymmetric SQUID,
and the magnitude of VAC required to flip the diode polarity is
generally larger than that of a trivial SQUID by a factor of 2.
The change in diode polarity can be attributed to the J0(z/2)
Bessel function contribution to the gap, associated with the
4π channel, which evolves with z more slowly than the trivial
Bessel dependence. Similar to a trivial asymmetric SQUID, a
screening current distorts the symmetry of ηc(�,VAC).

In Fig. 4, we consider the influence of microwave power
in the experimentally relevant current bias regime. We nu-
merically solve the coupled system of nonlinear differential
equations described in Eq. (2) where we are not limited by
the approximation βL, |1 − R21| � 1 used thus far. We con-
sider a current bias IB = IDC + IAC cos(2π f t ) with a driving
frequency h f /π� = 0.6 where π� ≡ 2eIcRn [83].

(a) (b)

(c) (d)

FIG. 3. AC power dependence of ηc for a 2π -4π SQUID with
(a)βL = 0 and (b)βL/(1 + R21) = 0.125. ηc vs VAC at �̂ = 3/4 for
a1 = 1 with (c)βL = 0 and (d)βL/(1 + R21) = 0.125.

FIG. 4. SQUID microwave response under current bias with �̂ =
3/4 and βL = 1 for (a), (b) the skewed SQUID with a1 = 1, a2 =
0.9 = 1 − c2, R21 = 2 and (c), (d) 2π -4π . Dashed lines indicate
powers at which ηc = 0.

Figure 4(a) shows the power dependence of the dV/dI
characteristics for a trivial asymmetric SQUID (� = �0/4)
where the diode polarity gradually switches at high powers,
as shown in Fig. 4(b). Dashed lines indicate a diode polarity
switch. In agreement with Figs. 2(c) and 2(d), ηc has a soft
sign switch at low power before switching abruptly as the
critical currents are nearly suppressed. Also in agreement with
Figs. 2(c) and 2(d), ηc has extrema as the critical currents
are suppressed. Figures 4(c) and 4(d) present the microwave
response of a 2π -4π SQUID. We note that the polarity of the
2π -4π SQUID is opposite to that of the trivial asymmetric
SQUID at zero ac power. ηc has a weak enhancement in mag-
nitude at lower IAC before a gradual sign change at IAC = Ic,
which is at a higher power than the first polarity switch of the
asymmetric SQUID (IAC ≈ 0.6Ic). Generally, the numerical
results indicate good agreement with the analytic calculations.
The dV/dI characteristics are generally nonreciprocal, show-
ing different Shapiro steps for positive and negative IDC [75].

IV. CONCLUSIONS

In this paper, we studied the JDE in the dc and ac response
of asymmetric SQUIDs, including the effects of inductance
and asymmetries in Ic and Rn. We showed that the inductance
βL and the ratio R21 = Rn,2/Rn,1 can tune the diode efficiency
of an asymmetric dc SQUID. Such results may be applicable
to recent experimental demonstrations of gate-tunable diode
effects in asymmetric SQUIDs [84,85]. For SQUIDs with a
4π junction, tuning βL and R21 can cause a switching on
the diode polarity. We also showed a 2π -4π SQUID has the
opposite diode polarity of a trivial SQUID over a wide range
of βL/(1 + R21) and �̂. We then discussed how the Josephson
diode polarity and efficiency of asymmetric SQUIDs can be
controlled by microwave irradiation. We presented calcula-
tions of the ac response of asymmetric SQUIDs where the
diode efficiency and polarity are controlled by the ac power.
The advantage of probing nonreciprocal transport in the ac
response is that missing Shapiro steps indicative of a frac-
tional Josephson effect have been observed experimentally
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[19,66–70], suggesting the ac response of a 2π -4π SQUID
can readily be observed regardless of whether the 4π junction
is topological or not.
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APPENDIX A: 2π-4π SQUID DYNAMICS

We start with the model for a semiclassical description of
SQUID dynamics:

Ibias = I1 + I2, (A1)

φ2 − φ1 = 2π

�0
�tot, (A2)

�tot = L(I1 − I2) + �, (A3)

Ii = VJ,i

R
+ Is,i + Ci

dVJ,i

dt
(A4)

where I1 and I2 are the currents in each of the SQUID arms,
φ1 and φ2 are the gauge-invariant phase differences across the
JJs in each of the SQUID arms, � is the total external mag-
netic flux through the SQUID, L is the inductance associated
with the screening flux, and VJ,i and Is,i for i = 1, 2 are the
potential differences across the ith JJ and the pair current in
the ith JJ, respectively. We can consider the general resistively
and capacitively-shunted junction (RCSJ) model for a SQUID
device:

d2φ1

dτ ′ 2
+ σ

dφ1

dτ ′

= iB
2

− is, 1(φ1) + 1

4πβL
(φ2 − φ1 − 2π�̂), (A5a)

C21
d2φ2

dτ ′ 2
+ σ

R21

dφ2

dτ ′

= iB
2

− I21is, 2(φ2) − 1

4πβL
(φ2 − φ1 − 2π�̂) (A5b)

where C21 = C2/C1, I21 = Ic,2/Ic,1, R21 = Rn,2/Rn,1, σ =√
�0/2π Ic,1R2

n,1C1, and τ ′ =
√

2π Ic,1/�0C1t . We will work
in the overdamped regime for simplicity, but the extension
is straightforward. Numerical calculations are generated by
solving the system of coupled differential equations in the
overdamped regime where capacitance is neglected.

For a 2π -4π SQUID, we consider the supercurrents is, 1 =
sin(φ1) and is, 2 = sin(φ2/2) where R21 = I21 = 1. We can
reduce the SQUID dynamical equations to a single dynamical

equation as a function of the average phase across the SQUID
φA = (φ1 + φ2)/2 by considering the inductance βL to be
perturbatively small [80]. The resulting dynamical equation is
iB/2 = dφA

dτ
+ ĩs(φA, �̂ext ) where τ ≡ (2πRI2π/�0)t and

ĩs(φA, �̂) = 1

2
sin

(
φA + π�̂

2

)
+ 1

2
sin

(
φA − π�̂

)

− πβL

8
{2 sin[2(φA − π�̂)] + sin(φA + π�̂)}

− πβL

8

[
sin

(
φA − 3π�̂

2

)

− 3 sin

(
3φA − π�̂

2

)]
. (A6)

DC response

We find that the SQUID dc response to magnetic
flux in the 2π -4π SQUID is asymmetric: Imax(�̂, IDC) �=
Imax(−�̂, IDC) �= Imax(�̂,−IDC). The symmetry retained in
the system is Imax(�̂, IDC) = Imax(−�̂,−IDC).

Besides this general asymmetry, we also notice that the
maximum critical current does not manifest at � = 0. Recall
that for a trivial SQUID with sinusoidal CPRs the currents are
maximized at φmax = π/2 and the two arms of the SQUID can
simultaneously have that phase φmax if the magnetic flux is an
integer multiple of the magnetic flux quantum:

φ2 − φ1 = 2π�

�0
(mod 2π ). (A7)

Now, for the 2π -4π SQUID, if the trivial arm (say, arm 1)
has φmax,1 = π/2 and the nontrivial arm has φmax,2 = π , then
it follows from the argument for the trivial SQUID that the
maximum should occur at � = �0/4.

APPENDIX B: SYMMETRIC SQUID WITH π-, 2π-,
AND 4π-PERIODIC CHANNELS

In this section, we provide the general solution for a sym-
metric dc SQUID circuit model with negligible capacitance,
weak inductance, and a supercurrent with π -, 2π -, and 4π -
periodic channels. We write an effective description of the
supercurrent channel with a skewed CPR and a topological
contribution as

Is = I4π sin(φ/2) + I2π sin(φ) + Iπ sin(2φ). (B1)

Making use of the ac Josephson effect dφ

dt = 2e
h̄ V , we find

dφ1

dτ
+ sin(φ1) + β̃ sin(2φ1) + α sin(φ1/2) + φ1 − φ2

4πβL

= 1

2

(
iB − �̂

βL

)
, (B2)

dφ2

dτ
+ sin(φ2) + β̃ sin(2φ2) + α sin(φ2/2) − φ1 − φ2

4πβL

= 1

2

(
iB + �̂

βL

)
(B3)

where β̃ ≡ Iπ/I2π , α ≡ I4π/I2π , βL ≡ LI2π/�0,
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iB ≡ Ibias/I2π , �̂ ≡ �/�0, and τ ≡ (2πRn,1I2π/�0)t .
Defining φA ≡ (φ1 + φ2)/2 and � ≡ (φ2 − φ1)/2π , we can
consider the sum and difference of equations to find

dφA

dτ
+ sin(φA) cos(π�) + β̃ sin(2φA) cos(2π�)

+ α sin(φA/2) cos(π�/2) = iB
2

, (B4)

π
d�

dτ
+ �

2βL
+ sin(π�) cos(�A) + β̃ sin(2π�) cos(2φA)

+ α sin(π�/2) cos(φA/2) = �̂

2βL
. (B5)

Assuming βL � 1, we make the following ansatz:

�(τ ) = �̂ + βL�1(τ ) + O(β2
L ). (B6)

Substituting, we find the solution to lowest order in βL is

�1(τ ) = −2[α sin(π�̂/2) cos(φA/2)

+ β̃ sin(2π�̂) cos(2φA) + sin(π�̂) cos(φA)]. (B7)

Now we can reduce the system of coupled equations into a
single equation for φA and calculate the time-averaged cur-
rent bias for an rf-driven junction. Substituting Eq. (B7) into
Eq. (B4) and simplifying, we find

dφA

dτ
+ a sin(φA) + b sin(2φA) + c sin(3φA) + d sin(4φA)

+ f sin

(
φA

2

)
+ g sin

(
3φA

2

)
+ h sin

(
5φA

2

)
= iB

2

(B8)

for the coefficients

a = x(1 − πβLβ̃y2) + π

4
α2βL(1 − x), (B9)

b = β̃ + (πβL − 2β̃ )y2, (B10)

c = 6πβLβ̃xy2, (B11)

d = 2πβLβ̃2y2, (B12)

f = α

(
Cπ/2 + π

2
βLySπ/2

)
, (B13)

g = 3π

2
αβLy(1 + 2β̃x)Sπ/2, (B14)

h = 5παβLβ̃xySπ/2 (B15)

where Sπ/2 ≡ sin(π�̂/2), Cπ/2 ≡ cos(π�̂/2), x ≡ cos(π�̂),
and y ≡ sin(π�̂). Note that if �̂ = 0 then only a, b, and f
are nonzero. The coefficients in Eq. (B8) have the following
interpretations: a, the 2π channel of each arm, the interference
of the 4π channels of the arms, and the interference of the 2π

and π channels of the arms; b, the π channel of each arm and
the interference of the 2π channels of the arms; c, the interfer-
ence of the 2π and π channels of the arms; d , the interference
of the π channels of the arms; f , the 4π channel of each arm;
g, the interference of the 4π and 2π channels of the arms, and
the interference of the 4π and π channels of the arms; and h,
the interference of the 4π and π channels of the arms.

Voltage-bias solution

From here, we can consider a voltage bias

V (τ ) = V0 + V1 cos(ωτ ) (B16)

and make use of the ac Josephson effect

dφA

dt
= 2e

h̄
V

to solve for φA(τ ) and substitute into Eq. (B8). Then we can
use the Jacobi-Anger expansion,

eiz sin(θ ) =
+∞∑

n=−∞
Jn(z)einθ , (B17)

where Jn are nth-order Bessel functions, to calculate the
Shapiro spikes and each spike’s width.

Now we will describe how to calculate Shapiro spike
widths in terms of the time-averaged pair current Is and
specifically consider the n = 0 spike. We start by integrating
the ac Josephson effect from the end of the previous section.
We can write (in dimensionless parameters)

φA(τ ) = φ0 + ω0τ + z sin(ωτ ) (B18)

where φ0 is an arbitrary integration constant, z = 2eV1/h̄ω,
and ω0 = 2eV0/h̄. We then substitute into Eq. (B8) to get
2dφA/dτ + Is = iB where

Is =2Im

{ +∞∑
n=−∞

(−1)ne−inωτ
[
aei(φ0+ω0τ )Jn(z) + be2i(φ0+ω0τ )Jn(2z) + ce3i(φ0+ω0τ )Jn(3z)

+ de4i(φ0+ω0τ )Jn(4z) + f e
1
2 i(φ0+ω0τ )Jn(z/2) + ge

3
2 i(φ0+ω0τ )Jn(3z/2) + he

5
2 i(φ0+ω0τ )Jn(5z/2)

]}
. (B19)

APPENDIX C: ASYMMETRIC SQUID DYNAMICS

Now we assume a general CPR with π -, 2π -, and 4π -
periodic channels:

is,1(φ1) = a1 sin(φ1) + b1 sin

(
φ1

2

)
+ c1 sin(2φ1), (C1)

�21is,2(φ2) = a2 sin(φ2) + b2 sin(φ/2) + c2 sin(2φ2) (C2)

where �21 = Ic,2Rn,2/Ic,1Rn,1. If we assume βL, |1 − R21| �
1 then we can reduce the system of two ordinary differential
equations (ODEs) to a single ODE via a perturbative ansatz
similar to the ansatz made by de Luca:

dφA

dτ
= iB

2
− ĩs(φA) + πβL(c1 − c2)2

2(1 + R21)
S4 (C3)
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where

ĩs(φA) = x2 sin(φA) + x4 sin(2φA) + x6 sin(3φA) + x8 sin(4φA) + x1 sin(φA/2) + x3 sin(3φA/2) + x5 sin(5φA/2)

+ y2 cos(φA) + y4 cos(2φA) + y6 cos(3φA) + y8 cos(4φA) + y1 cos(φA/2) + y3 cos(3φA/2) + y5 cos(5φA/2). (C4)

The coefficients of the effective supercurrent ĩs are [Cn ≡ cos(nπ�̂) and Sn ≡ sin(nπ�̂)]

x2 = πβLb1b2

2(1 + R21)
+

[
a1 + a2

2
− πβL

1 + R21

(
b2

1

2
− a1c1 + a1c2 + b2

2

4
− a2c1

2

)]
C1 − πβL

1 + R21

(
a2c1 − a2c2

2
+ a1c1

2

)
C3, (C5)

y2 =
[

a2 − a1

2
− πβL

1 + R21

(
a1c1 − a1c2

2
+ b2

2

4
− a2c1

2

)]
S1 − πβL

1 + R21

(
a2c2

2
− a2c1 + a1c1

2

)
S3, (C6)

x4 = πβLa1a2

1 + R21
+

(
c1 + c2

2
− πβL

(
a2

1 + a2
2

)
2(1 + R21)

)
C2, (C7)

y4 =
(

c2 − c1

2
− πβL

(
a2

2 − a2
1

)
4(1 + R21)

)
S2, (C8)

x6 = − πβL

1 + R21

(a2c2

2
− 2a2c1 − a1c1

2
− a1c2

)
C1 − πβL

1 + R21

(
2a1c1 + a2c1

2
+ a2c2 + a1c2

2

)
C3, (C9)

y6 = − πβL

1 + R21

(
2a2c1 − a2c2 + a1c1

2
− a1c2

)
S1 − πβL

1 + R21

(
−2a1c1 + a2c1

2
+ a2c2 + a1c2

2

)
S3, (C10)

x8 = − πβL

1 + R21

(
c2

2 − c2
1

2
− 2c1c2

)
− πβL

1 + R21

(
3c2

1 + c2
2

2

)
C4, (C11)

y8 = − πβL

1 + R21

(−3c2
1 + 2c1c2 + c2

2

2

)
S4, (C12)

x1 =
(

b1 + b2

2
+ πβL

1 + R21

a1b1 + a2b2

4

)
C1/2 − πβL

1 + R21

(
a1b2 + a2b1

4

)
C3/2, (C13)

y1 =
(

b2 − b1

2
+ πβL

1 + R21

a2b2 − a1b1

4

)
S1/2 − πβL

1 + R21

(
a2b1 − a1b2

4

)
S3/2, (C14)

x3 = πβL

1 + R21
[

(
3a1b2 + 3a2b1

4

)
C1/2 −

(
3a1b1 − 5b1c1 + 2b1c2 + 3a2b2 − 2b2c1 − b2c2

4

)
C3/2

−
(−2b2c2 + 2b1c1 + b1c2 + 5b2c1

4

)
C5/2], (C15)

y3 = − πβL

1 + R21
[

(
3(a1b2 − a2b1)

4

)
S1/2 +

(−3a1b1 + 5b1c1 − 2b1c2 + 3a2b2 − 2b2c1 − b2c2

4

)
S3/2

+
(

2b2c2 + 2b1c1 + b1c2 − 5b2c1

4

)
S5/2], (C16)

x5 = − πβL

1 + R21

[(−7b2c1 + 2b2c2 − 2b1c1 − 3b1c2

4

)
C3/2 +

(
7b1c1 − 2b1c2 + 2b2c1 + 3b2c2

4

)
C5/2

]
, (C17)

y5 = − πβL

1 + R21

[(
7b2c1 − 2b2c2 − 2b1c1 − 3b1c2

4

)
S3/2 +

(−7b1c1 + 2b1c2 + 2b2c1 + 3b2c2

4

)
S5/2

]
. (C18)

These are complicated expressions, but we can gain insight
about the effects of asymmetry on the dc and ac response of

the SQUID. First, we notice that the harmonics entering the
effective supercurrent are the same as those in the symmetric
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(a) (b) (c)

(d) (e)

FIG. 5. Iavg dependence on � and βL
1+R21

for a1 = 1 and (a)–(c) various values of W4π , (e) a2 = 0.8, b2 = 0.1 = c2, and (f) a2 = 0.9 = 1 − c2

(trivial SQUID).

case, except here we have both cosine and sine terms. For
�̂ = 0, we have y1 = . . . = y8 = 0 so that only the sine terms
contribute to the zero-field SQUID response. Interestingly,
higher harmonics, e.g., sin(2φA), contribute to the effective
supercurrent at zero field as opposed to the symmetric case
where higher harmonic contributions only affect the SQUID
response at nonzero magnetic flux.

Voltage-bias solution

As before, we can consider a voltage bias

V (τ ) = V0 + V1 cos(ωτ ) (C19)

and make use of the ac Josephson effect

dφA

dt
= 2e

h̄
V (C20)

to solve for φA(τ ). Then we can use the Jacobi-Anger expan-
sion,

eiz sin(θ ) =
+∞∑

n=−∞
Jn(z)einθ , (C21)

where Jn are nth-order Bessel functions, to calculate the
Shapiro steps and each step’s width.

We can integrate to solve for φA(τ ):

φA(τ ) = φ0 + ω0τ + z sin(ωτ ) (C22)

(a) (b) (c)

(d) (e)

FIG. 6. �Ic dependence on � and βL
1+R21

for a1 = 1 and (a)–(c) various values of W4π , (e) a2 = 0.8, b2 = 0.1 = c2, and (f) a2 = 0.9 =
1 − c2 (trivial SQUID).
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(a) (b)

FIG. 7. AC power dependence of �Ic for a trivial SQUID with
(a) βL

1+R21
= 0 and (b) βL

1+R21
= 0.125.

(c) (d)

(a) (b)

FIG. 8. AC power dependence of Iavg and �Ic for a 2π -4π

SQUID with (a) βL
1+R21

= 0 and (b) βL
1+R21

= 0.125.

where φ0 is an arbitrary integration constant, z = 2eV1/h̄ω, and ω0 = 2eV0/h̄. Then we have

Is(φ0, ω0 = mω) =
∑

n

(−1)n[x2 sin(φ0)Jn(z)δm,n + x4 sin(2φ0)Jn(2z)δ2m,n

+ x6 sin(3φ0)Jn(3z)δ3m,n + x8 sin(4φ0)Jn(4z)δ4m,n + x1 sin(φ0/2)Jn(z/2)δm/2,n

+ x3 sin(3φ0/2)Jn(3z/2)δ3m/2,n + x5 sin(5φ0/2)Jn(5z/2)δ5m/2,n + y2 cos(φ0)Jn(z)δm,n

+ y4 cos(2φ0)Jn(2z)δ2m,n + y6 cos(3φ0)Jn(3z)δ3m,n + y8 cos(4φ0)Jn(4z)δ4m,n

+ y1 cos(φ0/2)Jn(z/2)δm/2,n + y3 cos(3φ0/2)Jn(3z/2)δ3m/2,n

+ y5 cos(5φ0/2)Jn(5z/2)δ5m/2,n]. (C23)

APPENDIX D: ADDITIONAL DATA

Figures 5 and 6 show calculations of the average critical current and critical current difference corresponding to data in
Figs. 1(d)–1(h). Figures 7 and 8 show the critical current difference corresponding to data in Figs. 3 and 4, respectively.
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