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Theory of carrier transport in bilayer graphene
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We develop a theory for density, disorder, and temperature-dependent electrical conductivity of bilayer
graphene in the presence of long-range charged impurity scattering and short-range defect scattering, estab-
lishing that both contribute significantly to determining bilayer transport properties. We find that although
strong screening properties of bilayer graphene lead to qualitative differences with the corresponding single-
layer situation, both systems exhibit the approximately linearly density-dependent conductivity at high density
and the minimum conductivity behavior around the charge neutrality point due to the formation of inhomoge-
neous electron-hole puddles. The importance of short-range disorder in determining bilayer conductivity is a

qualitative finding of our work.
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Ever since the discovery of graphene,! its transport prop-
erties as functions of carrier density and temperature have
been of key fundamental and technological interest. The fun-
damental interest arises from the unique linear massless chi-
ral Dirac dispersion of electrons (holes) in the graphene con-
duction (valence) band with the system being a zero-gap
semiconductor which on doping (or external-field-induced
gating) changes its character continuously from being an
“electron-metal” to a “hole-metal” as it goes through the
charge neutral Dirac point. Unique transport properties of
massless, gapless, and chiral Dirac particles in two-
dimensional (2D) single-layer graphene (SLG) as functions
of their density and temperature have attracted a great deal of
experimental and theoretical attention over the last few
years.

More recently, however, carrier transport in 2D bilayer
graphene (BLG) has attracted considerable attention.>~* In
BLG, the carriers tunnel quantum mechanically between the
two layers leading to a modified band dispersion which is
approximately parabolic with an effective mass of about
0.033m,.* BLG transport thus involves dynamics of chiral,
parabolic dispersion carriers in the zero band-gap situation in
contrast to the chiral, linear-dispersion Dirac carrier system
for SLG. Among the characteristic observed features of BLG
carrier transport to be explained theoretically are a substan-
tially suppressed BLG mobility with respect to the SLG mo-
bility, a lower value of the minimum conductivity around the
charge neutrality point compared with the SLG situation, and
an enhanced temperature dependence of conductivity. In
spite of the much lower observed BLG mobility compared
with the SLG mobility, the density dependence of BLG con-
ductivity seems to manifest the same linear behavior as seen
in the SLG transport. In the current work, we investigate the
effect of chiral parabolic band dispersion on graphene diffu-
sive transport properties to see if we can understand the ob-
served BLG transport behavior as well as to compare and
contrast with the corresponding chiral linear SLG band-
dispersion results.

In this Rapid Communication we develop the quantitative
theory for BLG carrier transport in the presence of random
charged impurity (i.e., long-range Coulomb’) and short-
range defect scattering.® Our goal here is to develop a theory
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capable of making quantitative predictions about the tem-
perature and density-dependent BLG conductivity both at
high-carrier density and at the charge neutrality point at low-
carrier density. We make the reasonable assumption that the
actual BLG scattering mechanisms cannot be radically dif-
ferent from the ones operational in SLG (Refs. 7 and 8) since
both systems are made by identical exfoliation techniques.
As such we consider the presence of long-range charged im-
purity and short-range defect scattering as the resistive
mechanisms in our theory. In addition, the experimentally
measured BLG conductivity is large enough (o> 3e?/h) so
that the typical “kzl” values are in the range of 6-200 im-
plying the validity of the semiclassical Boltzmann transport
theory with the Born approximation for scattering. Quantum
(as well as higher-order scattering) corrections to our theory
should be smaller by factors of O[(kzl)~2] or larger and can
thus be neglected for the diffusive transport properties.

We start by providing a qualitative conceptual discussion
of BLG transport properties vis a vis SLG transport. Because
of the linear (SLG) versus quadratic (BLG) energy disper-
sion in the two cases, the density of states is linear (constant)
in SLG (BLG), leading to very distinct screening behavior in
the two cases:>!0 g>-C o kp; goEC o« k9= constant, where g7 is
the long wavelength Thomas-Fermi screening wave vector
and ko \n is the Fermi wave vector (with n as the tunable
2D carrier density). Therefore, the screened Coulomb impu-
rity potential, u;(¢), behaves very differently in the two sys-
tems: u3-%(q) ~kz's uP O~ (qrp+kp)~!, where grp=gbE®
=(4me®)/ (kh?*) =107 cm™!, where « is the background en-
vironmental dielectric constant. Thus, the nature of screened
Coulomb scattering is qualitatively different in the two
systems—in fact, the screened Coulomb disorder in the SLG
behaves as unscreened Coulomb interaction [i.e., v(g)
~1/g] (Ref. 9) whereas the screened Coulomb disorder in
the BLG behaves similar to the 2D screened Coulomb inter-
action although there are some differences.!? It is, therefore,
quite puzzling that experimentally the two systems have very
similar carrier-transport properties.>> Away from the charge
neutral point, CNP, (n=0), both manifest a conductivity, o,
approximately proportional to n, whereas for n~0 the con-
ductivity is approximately constant, forming the much-
discussed graphene minimum conductivity plateau in both
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cases. The striking similarity of the experimentally observed
density-dependent conductivity o(n) in the two systems pre-
sents a serious challenge to transport theories since the na-
ture of screened Coulomb disorder in the two systems is
fundamentally different.

In this Rapid Communication we propose that BLG car-
rier transport is controlled almost equally by two distinct and
independent physical scattering mechanisms: screened Cou-
lomb disorder due to random charged impurities in the envi-
ronment and a short-range disorder which is important
throughout (i.e., all the way from the CNP manifesting the
plateaulike minimum conductivity behavior to the high-
density conductivity increasing linearly with carrier density).
We find that neither pure Coulomb disorder nor pure short-
range disorder by itself can explain both the density and the
T dependence of the experimentally observed BLG conduc-
tivity behavior. We emphasize that the actual amount of Cou-
lomb and short-range disorder we need to qualitatively and
semiquantitatively explain the existing BLG transport data is
comparable to that already used in understanding the SLG
transport properties, and as such, there is no arbitrary data
fitting procedure in our theory.

The density- and temperature-dependent BLG conductiv-
ity is given within the Boltzmann transport theory by o
=(e?/m)[deD(e)er(€)(=df/ J€), where D(e), (e), and f are,
respectively, the energy-dependent density of states, the
transport relaxation time (which depends explicitly on the
scattering mechanism), and the (finite-7) Fermi distribution
function. 7 is given by

1 2T, 2k
'T(é' k) - h : (277)2|<‘/Sk,sk’>|2g(0kkr)

X [1=cos Oy 10 € — €r), (1)

where €y =sh%k>/2m is the carrier energy for the spin/
pseudospin state “s” and 2D wave vector K, (Vy ) is the
matrix element of the appropriate disorder potential, g(6)
=[1+co0s(26)]/2 is a wave function form factor associated
with the chiral nature of BLG (and is determined by its band
structure). In Eq. (1), n, is the appropriate 2D areal concen-
tration of the impurity centers giving rise to the random dis-
order potential V. We consider two different kinds of disor-
der scattering: (i) screened Coulomb disorder u; for which
nol( Vs > =nilu>=nfv,(q)/ e(g)|* and (ii) short-range dis-
order V, for which no|(Vy g)|>=n,V;. Here g=|k-k'|,
vi(q)=(2me?/ kq) is the 2D Coulomb potential, and V;, a con-
stant short-range (i.e., a & function in real space) potential.
(Note that we use n; to denote the charged impurity density.)
The dielectric screening function €(g) entering the effective
screened Coulomb disorder, which depends on both ¢ and T,
was calculated in Ref. 10 at T=0, and we have now gener-
alized it to T# 0 as shown in Fig. 1. Note that BLG screen-
ing peaks at 2k which is also the important scattering wave
vector due to the form factor g in Eq. (1).

It is straightforward to calculate the analytical density de-
pendence (for T/Tp<1) of BLG (SLG) conductivity from
the above formulas: o(n)~n*(n) for unscreened Coulomb
disorder; o(n)~n(n) for overscreened Coulomb disorder;
o(n)~n%n) and 1<a<2 for screened Coulomb disorder;

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 81, 161407(R) (2010)

T=0.5Tg

1 — T=1.0 Ty
N R R I=2\'O TF
0 1 2 3 4 5

/K

FIG. 1. (Color online) The wave-vector-dependent 2D BLG po-
larizability IT (in units of the density of states at the Fermi level Ny)
for different values of 7/Tr=0,0.1,0.5,1.0,2.0, where Tr=Er/kp
is the Fermi temperature (Tp~831 K for n=10'> cm™?) and the
dielectric function is given by e=1+v I where v, is the 2D Cou-
lomb interaction. The ordinate can be taken as a measure of the
strength of BLG screening in units of Thomas-Fermi screening con-

stant grp=~107 cm™.

o(n)~n (constant) for short-range disorder. We emphasize
that a(n) is a density-dependent exponent which varies
slowly changing from 1 at low density to 2 at high
density—in the BLG experimental density range o~ 1.2. In-
creasing temperature, in general, suppresses screening, lead-
ing to a slight enhancement of the exponent a. The qualita-
tive difference between BLG and SLG is that short-range
scattering contributes substantially to the BLG resistivity
whereas it does not for SLG resistivity, thus leading to a
suppressed mobility in BLG compared with SLG mobility.

It is obvious from the above discussion that Coulomb dis-
order by itself cannot explain the experimentally observed
linear density dependence of o(n) in BLG. By contrast, the
SLG conductivity for Coulomb disorder, either screened or
unscreened, follows the linear o(n) ~ n behavior whereas the
short-range disorder leads to a density-independent of(n)
~n® behavior. Thus, the carrier-transport physics is funda-
mentally and qualitatively different in SLG and BLG: in
SLG carrier transport is always dominated by Coulomb dis-
order except at extreme high densities, whereas in BLG the
short-range disorder is always asymptotically more impor-
tant than Coulomb disorder since the exponent ar> 1.

In Fig. 2 we present our full numerically calculated BLG
conductivity as a function of n for reasonable representative
values of disorder strength. The results shown in Fig. 2 are in
good agreement with recent experimental results>3 but we do
not make any attempt to obtain exact quantitative agreement
since the experimental results show substantial sample-to-
sample variations.'! Instead we discuss the salient qualitative
features of our results: (i) the calculated density dependence
is approximately linear over a wide density range as seen
experimentally; (ii) the temperature dependence is very weak
at higher densities as observed in recent experiments;? (iii) at
low densities, where T/ Ty, is not too small, there is a strong
insulating-type T dependence arising from the thermal exci-
tation of carriers (which is exponentially suppressed at
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FIG. 2. (Color online) (a) Density dependence of BLG conduc-
tivity for different temperatures, 7=0,50,100,150,200,300 K
(from bottom to top), 7;=10'" em™? and n,V§=2.0(eV A)% Top
inset shows o as a function of 7 in presence of short-range disorder.
The scaled conductivity applies for all densities. Bottom inset
shows o as a function of 7 in presence of screened Coulomb dis-
order for different densities n=5,10,30X 10" cm™2 (from bottom
to top). Here ay=0(T=0).

higher densities) and energy averaging, as observed
experimentally;? and (iv) when the dimensionless tempera-
ture is very small (T/Tr<<1) our theory necessarily predicts
(see lower inset of Fig. 2) a weak linear-in T metallic T
dependence arising from the temperature dependence of the
screened charge impurity scattering, i.e., the thermal sup-
pression of the 2kr peak associated with backscattering in
Fig. 1—this effect is enhanced in BLG due to the importance
of backscattering whereas it is suppressed in SLG. By con-
trast, for the short-range disorder o always increases with 7,
as shown in the upper inset of Fig. 2.

While the calculations for Fig. 2 are all carried out for
graphene on SiO, substrate (corresponding to k=2.5), we
have carried out detailed calculations of o(n, T, k) as a func-
tion of the effective background dielectric constant (not
shown) since screened Coulomb disorder should manifest a
strong dependence on «. Our calculations show the « depen-
dence of the net conductivity to be almost unobservable—for
example, covering BLG on SiO, with ice, thus changing «
from 2.5 to 3.5, would only increase the conductivity by 1%,
for n;=10'"" cm™2, and 10%, for n;=10'2 cm™.

The Boltzmann theory presented so far assumes a com-
pletely homogeneous carrier-density landscape over the BLG
sample and leads to o(T=0)=0 at the CNP (n=0). It is,
however, well known that SLG breaks up into an inhomoge-
neous landscape of electron-hole puddles around the
CNP.">714 We expect the same physics of electron-hole
puddles to dominate the BLG properties around the CNP,
and this will give rise to a finite “minimum conductivity,”
Omin=0(n=0) even in the limit 7— 0. We have investigated
the properties of BLG puddle formation by calculating the
ground state of the BLG in the presence of random charged
impurities solving the density-functional equations within a
local density approximation.!* Using the resultant ground-
state-density landscape n(r) with n={(n(r)), and averaging
over disorder realizations we have then calculated the BLG
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FIG. 3. (Color online) (a) n(r) of BLG at the CNP for a single
disorder realization with n,=10'" ¢cm™2 and d=1 nm. (b) Disorder
averaged P(n), at the CNP for BLG (SLG) red and broad curve
(blue and narrow curve) for n,=10'"" ¢cm™ and d=1 nm. For SLG
P(n=0)=0.1, out of scale. The corresponding nm, is 5.5
X 10'"" em2 for BLG and 1.2X 10" ¢cm™ for SLG.

transport properties using the effective medium theory,
EMT." The details of the calculations will be presented else-
where, here we present the realistic conductivity results in
the puddle dominated regime obtained using our EMT.

In Fig. 3(a) we show our calculated zero-density puddle
structure for the BLG for a single disorder realization with
n,=10"" cm™. We note that by neglecting the disorder-
induced inhomogeneities BLG (SLG) would have perfect
(vanishing) linear screening properties as n— 0, whereas the
strong carrier-density fluctuations and associated electron-
hole puddle structure induced by the charged impurities close
to the CNP are qualitatively very similar in BLG and SLG.
The linear (SLG) versus parabolic (BLG) carrier dispersion
has the quantitative effect of modifying the form of the prob-
ability distribution P(n) and make it much wider in BLG
than in SLG, as shown in Fig. 3(b).

Finally in Fig. 4 we show a(n) for BLG for several values
of T, taking into account the inhomogeneity of the puddles.
These results are calculated numerically through the EMT by
combining the density-functional electronic-structure calcu-
lation with the full Boltzmann transport theory. At high den-
sity (>n,), the theory gives the same results as that obtained
from the Boltzmann theory in the homogeneous case (i.e.,
Fig. 2) but at low densities there are significant deviations.
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FIG. 4. (Color online) Conductivity as a function of n obtained
using the EMT for n,=10'" em2, n,Vi=2(eV A)? and several val-
ues of 7, from top to bottom: 7=300,200,100,0. From the slope
for n>10"2 ¢cm™2 for T=0 we extract a mobility of 4000 cm?/Vs.
In the lower (upper) inset o, [0(n=1.9X 10'? cm™)] as a func-
tion of T for the same values of disorder strengths.
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For example, we now get a well-defined finite o,,;, even at
T=0. We show the T dependence of the conductivity for n
=0 and n>n; in the insets obtaining good agreement with
the experimental finding>3 of a strong insulating 7 depen-
dence of o, Our calculated o, depends weakly on n;
with no universally discernible functional dependence on n;.

We conclude by emphasizing the similarity and the differ-
ence between BLG and SLG transport from the perspective
of our transport-theory considerations. We find that both
manifest a nonuniversal sample-dependent minimum con-
ductivity at the CNP arising from the electron-hole puddle
formation due to the presence of long-range Coulomb disor-
der. We find that BLG manifests a fairly strong insulating
temperature dependence of o,,;,. We find that at high density
both BLG and SLG manifest a linearly increasing conductiv-
ity with increasing carrier density, as observed experimen-
tally. However the physical origin for this linear dependence
is quite different in the two systems: while in the SLG this
linearity arises entirely from Coulomb disorder, in the BLG
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the short-range disorder scattering contributes to this linear-
ity. The short-range disorder leads to a strong insulating tem-
perature dependence of BLG conductivity since short-range
disorder leads to a o(7) increasing with T for all T, whereas
Coulomb scattering always leads to a o(7T) decreasing (lin-
early at first) with increasing 7T for T<< Ty. The importance of
short-range disorder in determining the bilayer conductivity
at all densities, in contrast to the corresponding SLG case
which is dominated by Coulomb scattering, arises from the
qualitatively different density of states in BLG (constant)
versus in SLG (linear), thus leading to much stronger effec-
tive short-range scattering in BLG compared with SLG even
for the same bare scattering strength. We predict in general a
nonuniversal density and temperature dependence of BLG
conductivity since long- and short-range disorders, with dis-
tinct density and temperature dependence both contribute to
BLG transport equivalently at all carrier densities.
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