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Superfluid weight of strongly inhomogeneous superconductors
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In this work, we obtain the superfluid weight of strongly inhomogeneous superconductors. We find that, in
general, the response of the superconductor’s pairing potential to the perturbing vector potential is essential
to obtain the correct value of the superfluid weight. We consider two exemplary cases: the case when strong
inhomogeneities in the pairing potential are induced by a periodic potential, and the case when superconducting
vortices are induced by an external magnetic field. For both cases we show that the correction to the superfluid
weight due to the response of the paring potential to the perturbing vector potential can be significant, it must be
included to obtain quantitatively correct results, and that for the case when vortices are present the expression
of the superfluid weight that does not include such correction returns qualitatively wrong results. The results are
directly relevant for superconducting states in moiré multilayer where the almost inevitable spatial variations
of the magic angle and the proximity of superconductivity to anisotropic phases induce inhomogeneities in the
pairing potential, and to the efforts to optimally pin superconducting vortices to achieve large superconducting
critical currents.
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The Meissner effect is the hallmark signature of supercon-
ductivity. It is described by the London equation Jμ = D(s)

μνAν

where Jμ is the μ component of the charge current, Aν is
the ν component of a static, transverse, long-wavelength vec-
tor potential, and D(s)

μν is the superfluid weight tensor. D(s)
μν

can be seen as the key quantity that characterizes a super-
conductor [1,2]. In two dimensions (2D) D(s)

μν is also the
quantity that fixes the critical temperature, TBKT, at which
the Berezinskii-Kosterlitz-Thouless (BKT) [3,4] transition,
between superconducting and normal phase, takes place. For
an isotropic superconductor with an isolated parabolic band
crossing the Fermi energy in the normal phase, at zero temper-
ature, we have the conventional result Tr[D(s)

μν]/d = e2n/m∗,
where d is the number of dimensions, e is the elementary
charge, n is the electron density, and m∗ is the effective
mass. The realization of superconducting states in magic-
angle twisted bilayer graphene [5–15], for which the bands
are extremely flat so that m∗ → ∞, has made clear the limita-
tions of the conventional result. In recent years, more general
expressions for D(s)

μν accounting for the effect of quantum
geometry in multiband superconductors have been obtained
[16–32]. These formulations show how, in flat-band systems
like twisted bilayer graphene, the contribution to D(s)

μν arising
from the quantum geometry can be dominant [33–38]. The
strong interest in D(s)

μν is also evidenced by the recent experi-
ments that have been realized to measure it directly [39–43].

In many cases of interest, the pairing potential � cannot
be assumed to be spatially uniform. This is the case, for in-
stance, when disorder is present [22,44–48]. It is the situation
typically encountered in moiré multilayers due to the almost
unavoidable presence of spatial variations of the twist angle
[49] and the evidence that the superconducting state might
be nematic [50]. Strong inhomogeneities have been observed
to also significantly affect the superfluid state of iron-based

superconductors, as demonstrated in scanning tunneling mi-
croscopy experiments on FeTeSe [51], and are a feature of
charge-density-wave materials like Pd-intercalated ErTe3 in
which anomalous superfluid density has been measured [52].
In addition, the correct, and quantitative, theory for the in-
terplay of superfluidity and inhomogeneities is essential for
the description of superconductors with vortices. We find the
surprising result that in the presence of an unpinned vortex
lattice the superfluid weight is zero. Our approach, based on
linear response theory, provides a clear explanation for such
a striking result, a result that before our work could not be
understood, and could only be gleaned from a careful analysis
of Monte Carlo simulations [53,54].

The presence of spatial inhomogeneities mixes the sys-
tem’s response to the longitudinal and transverse components
of an external vector potential, a fact that makes the calcula-
tion of D(s)

μν more challenging [55]. The reason is that, whereas
the BCS mean-field treatment, within the linear response
approximation, returns the correct response of a supercon-
ducting system to a transverse vector field [1,2,56], it is known
to return an incorrect, gauge-dependent, response to a longi-
tudinal vector field [56]. This issue was addressed by several
papers [57–66] that pointed out that for the general case,
gauge invariance is restored by taking into account the vertex
corrections for �, the so called collective-mode contributions,
i.e., by including the response of � to the vector field A. Later
works considered the role of such contributions for specific
cases [26,67–74]. In Ref. [20], an expression for D(s)

μν was
obtained that showed the importance of such contributions to
restore the independence with respect to the position of the
orbitals of the long-wavelength, zero frequency electromag-
netic response of a superconductor. In this work, we present a
theoretical treatment for the calculation of D(s)

μν that overcomes
the limitations of previous works. The treatment presented is
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very general, as it does not require uniform pairing; isolated
band limit; spin rotational symmetry; or time-reversal sym-
metry, and it is valid also for the challenging case when the
phase of � varies rapidly in space. This generality allows
the use of our treatment to calculate the superfluid weight
of two very important classes of superconductors: topologi-
cal superconductors and superconductors with vortices. The
formalism is valid for any multiband superconductor and
includes quantum-geometric contributions. To verify the ac-
curacy of our expression, we compare its predictions to the
results obtained by calculating, via a numerical self-consistent
approach, the free energy, F , as a function of the perturbing
field A and then D(s)

μν as the second derivative of F with respect
to A: Dμν

s = (1/V )d2F/dAμdAν , where V is the system’s
volume. We do this for two important exemplary cases: the
case when strong inhomogeneities in � are induced by a
periodic superlattice potential applied to a 2D superconductor,
and the case when superconducting vortices are induced by
an external magnetic field perpendicular to a 2D supercon-
ductor. In both cases we find that the results obtained by
numerically calculating the second derivative with respect
to A of the free energy are the same as the ones obtained
using the derived expression, but can be significantly different
from the ones obtained using the expressions for D(s)

μν available
in the literature that do not take into account the presence of
inhomogeneities. For the case when vortices are present, the
expression of D(s)

μν that does not include the response of � to
A returns a qualitatively wrong result—it erroneously predicts
a finite value of D(s)

μν even for an infinite 2D array of unpinned
vortices, in contrast to the expression that we present, that
correctly returns Dμν

s = 0 for this situation [53,54,75].
We describe the superconducting state using a Bogoliubov-

de Gennes (BdG) effective mean field Hamiltonian ĤBdG.
Given that the goal of this work is to obtain the correct
response of inhomogeneous superconductors to an external
vector field, and not the identification of the many-body
ground state, the use of the BdG approach is very pragmatic:
it allows the modeling of any superconducting state taking as
inputs from experiments the values of the parameters entering
the model. For concreteness, we consider a superconductor
with s-wave pairing originating from an on-site attractive in-
teraction of strength U > 0. For such a system,

ĤBdG = −
∑
jlσ

t�
j c†

j+β�
j ,σ

c j,σ −
∑

jσ

1

2
(μ − Vj )c

†
j,σ c j,σ

−
∑

j

[
� jc

†
j,↑c†

j,↓ − |� j |2
2U

]
+ H.c., (1)

where the subscript j is shorthand for the position vector
r j , σ =↑,↓ is the spin index, t�

j is the hopping amplitude

at position r j along the bond β�
j , c†

j,σ (c j,σ ) is the creation
(annihilation) operator for an electron at position r j with spin
σ , μ is the chemical potential, Vj is an applied potential, and
� j is the pairing potential at position r j obtained from the
self-consistent equation � j = U 〈c j,↓c j,↑〉, where the angle
brackets denote equilibrium expectation values at temperature
T . In general, the lattice can have a basis and so r j = Ri + bm,
where {Ri} are the position vectors that identify the lattice
and bm are the vectors for the positions of the basis elements

within the primitive cell. β�
j are bond vectors that connect sites

within, and between, primitive cells, making the expression of
ĤBdG, Eq. (1), very general. In the remainder, the primitive cell
is chosen so that �(r j ) = �(r j + Ri ), and therefore, when
� is inhomogeneous, can be much larger than the crystal’s
primitive cell.

D(s)
μν relates the strength of the charge current Ĵ to a

static, transverse, vector field A with zero parallel momen-
tum q‖, and perpendicular momentum q⊥ → 0 [1]: 〈Ĵμ〉 =
D(s)

μνAν (q‖ = 0, q⊥ → 0, ω = 0), where 〈Ĵμ〉 is the expecta-
tion value of the μ component of the current, and ω the
frequency of the field A. D(s)

μν can therefore be obtained by
calculating the linear response of Ĵ to a transverse vector
field A. For a tight-binding model, the presence of the field A
can effectively be taken into account by introducing a Peierls
phase for the hopping parameters: t�

j → t�
j eiA·β�

j . In addition,
it can induce a change in the pairing field that, as we will
show, cannot be neglected for inhomogeneous superconduc-
tors. Taking this into account, as was done in Ref. [20], using
Ĵμ = −δĤBdG/δAμ, we find

Ĵμ(r j ) =
∑
�,σ

(
i
(
β�

j

)
μ

t�
j eiA(r j ,t )·β�

j c†
j+β�

j ,σ
c j,σ + H.c.

)

+
∑

j′

[
δ� j′

δAμ(r j )
c†

j′,↑c†
j′,↓ − 1

2U

δ|� j′ |2
δAμ(r j )

+ H.c.

]
.

(2)

To first order in A, we have

Ĵμ = ĴK p
μ + T̂ K

μνAν + Ĵ�p
μ + T̂ �

μνAν, (3)

where ĴK p
μ , T̂ K

μνAν are the paramagnetic and diamagnetic cur-
rents, respectively, arising from the kinetic energy part of
the BdG Hamiltonian, and Ĵ�p

μ , T̂ �
μνAν the paramagnetic and

diamagnetic currents due to the change of � j induced by
A. T̂ �

μνAν does not contribute to 〈Ĵμ〉 and to D(s)
μν—see the

Supplemental Material (SM) [76]—and so we can neglect it.
Ĵ�p
μ is given by the second line of Eq. (2) by evaluating the

variational derivatives at A = 0. Ĵ�p
μ also does not contribute

to 〈Ĵμ〉, but it does contribute to D(s)
μν . As we show below, its

contribution to D(s)
μν is critical when � is not homogeneous.

To obtain the current response to a vector field with van-
ishing momentum q, it is convenient to express the current in
momentum space. By performing the Fourier transform with
respect to Ri, we can write

cRi+bm,σ = 1√
Nc

∑
k

cmσ (k)eik·bm eik·Ri , (4)

where cmσ (k) [c†
mσ (k)] is the creation (annihilation) operator

for an electron in the state |kmσ 〉 with momentum k, orbital
m, and spin σ . The operator c(k)m,σ is defined apart from
an overall phase factor. In writing Eq. (4) we have chosen
this overall phase factor to be eik·bm , given that this choice
allows us to write the full paramagnetic current operator, in
momentum space, in the limit q → 0, in the compact form

Ĵ p
μ(q → 0) = 1

Nc

∑
kmm′

ψ†
m(k)Imm′μ(k)ψm′ (k) + C, (5)
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where Nc is the number of unit cells, ψ†
m(k) = (c†

m↑
(k), c†

m↓(k)), C is a constant, and

Imm′;μ(k) =
⎛
⎝ ∂Hmm′

∂kμ

∣∣
k

δ�m
δAμ

∣∣
0δmm′

δ�∗
m

δAμ

∣∣
0δmm′ − ∂H∗

mm′
∂kμ

∣∣
−k

⎞
⎠ (6)

with {Hmm′ (k)} the matrix elements, in the basis {|kmσ 〉},
of the normal state Hamiltonian, Ĥ , and δ�m/δAμ|0 ≡
δ�m/δAμ(q → 0)|A=0.

By setting the off-diagonal terms in Imm′;μ(k) equal to 0
we obtain the matrix IK

mm′;μ(k) that, when inserted in Eq. (5),

returns the expression of ĴK p
μ in the limit q → 0, ω = 0. For

the operator T̂ K
μνAν , we obtain

T̂ K
μν (q) = −

∑
m,�,σ,k

(β�
m)μ(β�

m)ν
Nc

[
t�
me−ik·β�

m c†
m+β�

m,σ
(k)cmσ (k + q)

+ t�∗
m ei(k+q)·β�

m c†
mσ (k)cm+β�

m,σ (k + q)
]
. (7)

The superfluid weight is given by the sum of the
paramagnetic current response �μν (q → 0, ω = 0) and the
expectation value of the operator T̂ K

μν :

D(s)
μν = �μν (q → 0, ω = 0) + 〈

T̂ K
μν

〉
. (8)

We have

�μν (q, 0) = i

Nc

∫ ∞

0
dt

〈[
ĴK,p
μ (q, t ), Ĵ p

ν (−q, 0)
]〉
. (9)

Notice that by replacing in Eq. (9) Ĵ p
ν (−q, 0) with ĴK,p

ν (−q, 0)
we recover the expression of � that neglects the effect on �

of A. In the limit q → 0, ω = 0, we find

�μν (q → 0, 0) = 1

Nc

∑
k,ab

nF (Ea(k)) − nF (Eb(k))

Ea(k) − Eb(k)

× 〈φa(k)|IK
μ (k)|φb(k)〉〈φb(k)|Iν (k)|φa(k)〉,

(10)

where nF is the Fermi-Dirac function, and {Ea}, {|φa(k)〉} are
the eigenvalues and eigenvectors, respectively, of ĤBdG. A
key aspect of the expression for � given by Eq. (10) is that
the matrix Iν (k), Eq. (6), in Nambu space, has nonzero off
diagonal elements δ�m/δAμ|0.

To obtain the expression of δ�m/δAμ|0 we need to cal-
culate the response of � to an external vector potential A.
We note that one can treat A as a parameter in the mean
field calculation and use the finite difference approximation
to determine δ�m/δAμ|0 (see the SM [76]). This approach
requires knowledge of the self-consistent solution for � at
finite A as well as A = 0. The linear response expression of
δ�m/δAμ|0 requires only the solution at A = 0, and is given
by

δ�m

δAμ

∣∣∣∣
0

= i

Nc
lim
q→0

∫ ∞

0
dt〈[�̂m(q, t ), Ĵ p

μ(−q, 0)]〉, (11)

where �̂m(q) = U
∑

k cm↓(−k)cm↑(k + q). Notice that
Eq. (11) is equivalent to the inclusion of the anomalous
components of the vertex corrections [56,77], the relevant
components for the mean-field treatment considered (see

also the discussion on vertex corrections in the SM [76]).
The vertex corrections guarantee that the expectation value
of the full current operator satisfies the Ward identities,
and therefore charge conservation, even when � is not
homogeneous leading to mixing of responses to transverse
and longitudinal vector fields.

Equation (11) leads to a linear equation for δ�m/δAμ|0 of
the form

K

(
δ�(R)

μ

δ�(I )
μ

)
=

(
C(R)

μ

C(I )
μ

)
; K =

(
K (R)

+ −K (I )
−

K (I )
+ K (R)

−

)
, (12)

where δ�(R) and δ�(I ) are the real and imaginary parts of the
vector with components {δ�m/δAμ|0}, C(R)

μ and C(I )
μ are the

real and imaginary parts of the vector with components

(Cμ)m = 1

Nc

∑
k,ab

nF (Ea(k)) − nF (Eb(k))

Ea(k) − Eb(k)

× 〈
φm

a (k)
∣∣τ−

∣∣φm
b (k)

〉〈φb(k)|IK
μ (k)|φa(k)〉 (13)

and K (R/I )
± = A(R/I ) ± B(R/I ) with A(R/I ), B(R/I ) the

real/imaginary parts of matrices with elements

Amm′ = −1

Nc

∑
k,ab

nF (Ea(k)) − nF (Eb(k))

Ea(k) − Eb(k)

× 〈
φm

a (k)
∣∣τ−

∣∣φm
b (k)

〉〈
φm′

b (k)
∣∣τ+

∣∣φm′
a (k)

〉 − 1

U
δmm′ ,

(14)

Bmm′ = −1

Nc

∑
k,ab

nF (Ea(k)) − nF (Eb(k))

Ea(k) − Eb(k)

× 〈
φm

a (k)
∣∣τ−

∣∣φm
b (k)

〉〈
φm′

b (k)
∣∣τ−

∣∣φm′
a (k)

〉
. (15)

In Eqs. (13)–(15), |φm
a (k)〉 is the component of |φa(k)〉 on

orbital m and the τ ’s are Pauli matrices in particle-hole space.
Naïvely, δ�m/δAμ|0 can be obtained by inverting Eq. (12).
However, the square matrix K is singular, it has rank one less
than its dimension. This reflects the fact that the vector �m,
and therefore δ�m/δAμ|0, is defined apart from an overall
phase α (see the SM [76]). δ�m/δAμ|0, apart from the overall
phase α, can be obtained by calculating the pseudoinverse of
K via a singular value decomposition (see the SM [76]).

Equations (8), (10), and (12)–(15) allow the calculation of
the full superfluid weight. We can write D(s)

μν = D(s0)
μν + δDs

μν ,
where D(s0)

μν is the value of D(s)
μν obtained neglecting the cor-

rection due to the response of � to A, and

δD(s)
μν = 2 Re

[∑
m

(Cμ)m
δ�∗

m

δAν

∣∣∣∣
0

]
(16)

is the correction due to the changes in the pairing potential
induced by A. We note that our result may be obtained us-
ing vertex corrections [56,60], which we also discuss in the
SM [76]. The correction δD(s)

μν given by Eq. (16) is gauge
invariant (see the SM [76]). To check that the inclusion of
the correction δD(s)

μν returns the accurate quantitative value of
D(s)

μν , we compare the results obtained by combining Eqs. (8),
(10), and (12)–(15), and the ones obtained using the rela-
tion D(s)

μν = (1/V )d2F/dAμdAν . The full derivative of F with
respect to A indicates that also the dependence of F on

L180501-3



JONATHAN SCHIRMER AND ENRICO ROSSI PHYSICAL REVIEW B 112, L180501 (2025)

FIG. 1. (a) (1/2)Tr(D(s)
μν ) as a function of V0 without (red points) and with (blue points) the correction from the response of � for a 2D

superconductor with ten 12 × 12 unit cells in both the x and y directions (Nc = 100), t = 1, μ = −3.5, and U = 3.4. The yellow crosses show
the values obtained by using the second derivative of the free energy. Inset: color plot showing the spatial profile of |� j | for V0 = 0.5. The
dashed red box represents one unit cell. (b) Calculated profile of |� j | for the case of a superconductor with a vortex lattice induced a magnetic
field Bz = �0/144a2 (�0 = h/e) in the absence of any pinning potential. The gray arrows show the motion of the vortices in response to a
constant vector field along the x direction. (c) Schematics showing how the motion of unpinned vortices induces a phase twist, −ϕ, that cancels
the applied one, ϕ = AxLx induced by the vector potential (Lx is the size of the system along the x direction). (d) (1/2)Tr(D(s)

μν ) as a function of
V0 without (red points) and with (blue points) the correction from the response of � for a 2D superconductor with a vortex lattice as shown in
panel (b). As in (a) the yellow crosses show the values obtained by calculating the second derivative of the free energy.

A through � is included. The derivatives d2F/dAμdAν are
calculated numerically for the ground state that is obtained
solving self-consistently the gap equation.

Figure 1(a) shows the calculated values of (1/2)Tr(D(s)
μν )

for a 2D superconductor on a square lattice with lattice con-
stant a = 1 in the presence of the periodic potential

V (r j ) = −V0

2

[
cos

(
2π

M
xj

)
+ cos

(
2π

M
yj

)]
(17)

with period M. In Eq. (17), r j = (x j, y j ). The potential has
the effect of modulating the density of electrons, as well as
the amplitude of the order parameter � j , thus rendering the
superconductor inhomogeneous; see the inset of Fig. 1(a).

For V0 = 0 the superconductor is homogenous, in this case
(Cμ) j = 0 (see the SM [76]) making δ�m/δAμ|0 = 0 and
therefore D(s)

μν = D(s0)
μν . The results show that, indeed, for V0 =

0 D(s)
μν , shown by the blue circles, coincides with D(s0)

μν , shown
by the red circles, and with the value obtained by calculating
d2F/dAμdAν , yellow crosses. However, for V0 �= 0, � j is
inhomogeneous and so the correction δDs

μν is non-negligible,
making D(s)

μν �= D(s0)
μν , as shown in Fig. 1(a). We see that for

V0 �= 0 only the value of D(s)
μν obtained by taking into account

the corrections due to δ�m/δAμ|0 agrees with the value of D(s)
μν

obtained by calculating d2F/dAμdAν .
The corrections to D(s)

μν due to δ�m/δAμ|0, i.e., Ĵ�p
μ , be-

come qualitatively very important when vortices are present.
A lattice of unpinned vortices was found to have vanishing
superfluid weight [53,54]. This can be understood consider-
ing that for a vortex lattice in the (x, y) plane induced by a
background magnetic field Bz in the direction perpendicular to
the plane, for a spatially, perturbing, constant, in-plane, vector
potential A, say along the x direction, the vortices respond
by shifting their position along the y direction, as shown in
the inset of Fig. 1(b), by an amount �y = h̄

e
|A|
Bz

. Because this
translation costs no free energy, given that it corresponds to
the q → 0 Goldstone mode associated to the translational
symmetry spontaneously broken by the vortex lattice, we have
D(s)

μν = 0.

To study the superfluid weight in the presence of vortices,
and a pinning periodic potential with period M of the form
given by Eq. (17), we consider the case of a 2D supercon-
ductor on a square lattice in the presence of a perpendicular
background magnetic field Bz [78] (see the SM for details
[76]). In Fig. 1(b) we show the results for D(s0)

μν , D(s)
μν obtained

taking into account the correction δDs
μν , and D(s)

μν obtained by
taking the second derivative of F with respect to A. The results
show that for V0 = 0, even though an unpinned vortex lattice
is present, D(s0)

μν is finite and quite large (red circles in the
figure), of the same order as for the case of a superconducting
state with no vortices [see Fig. 1(a)]. This contrasts with the
expectation that superfluid weight should vanish. The inclu-
sion of the correction δD(s)

μν leads to D(s)
μν = 0 (blue circles),

the correct value in the presence of an unpinned vortex lattice,
the same value that we find by calculating D(s)

μν as the sec-
ond derivative of F with respect to A (yellow crosses). This
is one of the key results of the present work: it shows that
in the presence of vortices, the correction to D(s)

μν due to the
response of � j to A is essential to obtain the qualitatively
correct value of the superfluid weight. As V0 increases, and
the vortices start getting pinned, D(s)

μν also increases from zero
and starts getting closer to the value of D(s0)

μν . Notice, however,
that even for V0 = 0.5t , the value of D(s0)

μν is still about 60%
larger than the value given by the full expression of D(s)

μν , value
that coincides with the one obtained by calculating the second
derivative of F with respect to A.

In summary, we have presented a theoretical approach that,
by efficiently taking into account the response of the super-
conducting order parameter to the external vector potential
A, allows the calculation of the superfluid weight D(s)

μν for
strongly inhomogeneous superconductors. Our approach, and
results, are directly relevant to the case in which vortices are
present in the pairing potential. When the superconducting
vortex lattice is not pinned, we find that the response of the
superconducting order parameter to A is essential to obtain
the expected result of zero superfluid weight. These results
advance the understanding of vortex-superfluid interplay, for
example in systems like cuprates and kagome superconduc-
tors [79–81], motivating further studies to optimize critical
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currents for applications. For two-dimensional systems, the
results presented show the importance of the response of
the superconducting order parameter to the external vector
potential when calculating the critical temperature TBKT for
the Berezinskii-Kosterlitz-Thouless phase transition of an in-
homogeneous superconductor, given the connection between
D(s)

μν and TBKT.
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Hamiltonian

Let us suppose our system is defined on a lattice with sites {rj}, where the site/orbital labels are j, and with
bonds described by a set of vectors {βℓ

j} that start at site j, are labelled at each j by the label ℓ, and where

Arg(βℓ
j) ∈ (−π/2, π/2] in 2D. The latter condition is so that we consider “forward hopping” only. We take care

of backward hopping, at the same time as ensuring Hermiticity, by adding the Hermitian conjugate of the forward
hopping terms to the Hamiltonian. If two orbitals reside in the same location, one can unambiguously define βℓ

j via
point-splitting. We include an on-site superconducting pairing, originating from an on-site attractive interaction of
magnitude U > 0. The mean field Hamiltonian is

ĤMF = −
∑
j,ℓ,σ

(
tℓjc

†
j+βℓ

j ,σ
cj,σ +H.c.

)
−
∑
j,σ

(µ− Vj) c
†
j,σcj,σ −

∑
j

(
∆jc

†
j,↑c

†
j,↓ +∆∗

jcj,↓cj,↑ −
|∆j |2

U

)
(1)

where the subscript j is shorthand for the position vector rj , the complex hopping amplitude along bond βℓ
j is tℓj ,

the chemical potential is µ, Vj is an applied potential, and, at zero temperature, ∆j = U⟨cj,↓cj,↑⟩ with the angle
bracket denoting equlibrium expectation values at temperature T . These are the self-consistency equations.

Suppose that the system possesses a translational invariance by vectors a1,a2 (specializing for 2D here). We may
then define unit cells whose locations we specify by Ri = ma1 + na2 with m,n ∈ Z. The position of any orbital
can then be given by

rj = Ri + bm (2)



2

where bm specifies the location of the orbital within the unit cell. The bonds and the hopping amplitudes then
possess this translational invariance:

βℓ
j+R = βℓ

j (3)

tℓj+R = tℓj (4)

where the subscript j +R is shorthand for rj +Ri. We will also suppose that the solution to the self-consistency
equations possesses this same periodicity:

∆j+R = ∆j (5)

We thus perform the Fourier transformation

cjσ =
1√
Nc

∑
k

cm,σ(k)e
ik·rj (6)

where m is shorthand for r̃j . Using the basis of Nambu spinors

Ψ̂(k) =



c1,↑(k)
...

cN,↑(k)

c†1,↓(−k)
...

c†N,↓(−k)


(7)

with N the number of sites/orbitals per unit cell, the Hamiltonian (1) can then be cast in Bogoliubov-de Gennes
(BdG) form:

ĤMF =
∑
k

Ψ̂†(k)HBdG(k)Ψ̂(k) +
∑
k

Tr[H(k)] +
|∆j |2

U
(8)

where

HBdG(k) =

(
H(k) −∆
−∆∗ −H∗(−k)

)
(9)

is the BdG Hamiltonian, H(k) is the normal state Hamiltonian, and

∆ =


∆1 0 0 · · · 0
0 ∆2 0 · · · 0
0 0 ∆3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ∆N

 (10)

Current Operator

In this Supplementary Materials, A will refer to a probe electromagnetic potential. The orbital effect of any
background magnetic field is accommodated in the model by the complex hopping amplitudes tℓj . To determine the
current, we must specify how the system couples to an external vector potential A(r, t). We suppose the hopping
part of the Hamiltonian couples via a Peierls substitution

tℓj → exp
(
iϕℓj
)
tℓj (11)

where

ϕℓj =

∫ rj+βℓ
j

rj

A(r, t) · dr (12)
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Notice that this change in the hopping amplitudes leads to a change in the groundstate |G⟩ which in general leads
to a change in ∆j . We will compute this change in later sections. We choose the path of integration to be the
straight line connecting rj to rj + βℓ

j given by the vector βℓ
j .

The system only couples to the average value of A(r, t) along the bonds. This is because

∫ rj+βℓ
j

rj

A(r, t) · dr = Aℓ
j(t) · βℓ

j (13)

where Aℓ
j(t) denotes the average value of A(r, t) along bond βℓ

j . The current along bond βℓ
j (the current in lattice

models is defined on the bonds) is given by

Ĵ ℓ
j = −δĤMF

δAℓ
j

=
∑
σ

(
iβℓ

j t
ℓ
je

iϕℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+
∑
i

(
δ∆i

δAℓ
j

c†i,↑c
†
i,↓ +

δ∆∗
i

δAℓ
j

ci,↓ci,↑ −
1

U

δ|∆i|2

δAℓ
j

)
(14)

= βℓ
j

∑
σ

(
itℓje

iϕℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+ βℓ

j

∑
i

(
δ∆i

δϕℓj
c†i,↑c

†
i,↓ +

δ∆∗
i

δϕℓj
ci,↓ci,↑ −

1

U

δ|∆i|2

δϕℓj

)
(15)

≡ Ĵ ℓK
j + Ĵ ℓ∆

j (16)

The first sum in (15) is denoted Ĵ ℓK
j and is the contribution of the current coming from the kinetic energy. The

second sum, which is the contribution of the current from the pairing potential, is denoted Ĵ ℓ∆
j . The distinction

between these two contributions, which we may call kinetic current and pairing current, respectively, will play an
important role in this SM. We see explicitly that the current is directed along the bonds. We have also taken the
chemical potential to be fixed.

We make a few additional comments on (15):

1. In general, δ∆j/δϕ
ℓ
j′ ̸= 0 for j ̸= j′. For example, when varying ϕℓj , we should at the very least expect the

pairing potential ∆i to respond at the starting and ending sites of the bond βℓ
j .

2. The self-consistency equations imply that the average pairing current vanishes
〈
Ĵ ℓ∆
j

〉
≡ 0. Thus the average

current is given by the average kinetic current〈
Ĵ ℓ
j

〉
= βℓ

j

∑
σ

(
itℓje

iϕℓ
j

〈
c†
j+βℓ

j ,σ
cj,σ

〉
+ c.c.

)
=
〈
Ĵ ℓK
j

〉
(17)

However, the pairing current does contribute to current correlations in the system, as we shall see.

If we are only interested in the responses of the system to vector potentials which vary slowly in space compared
to the length of the bonds, we may replace Aℓ

j → A(rj , t), up to negligible error of O
(
|βℓ

j |/λ
)
, where λ is the

characteristic length scale of variations in A(r, t). We can then meaningfully define the current at the lattice sites
by

Ĵµ(rj) = − δĤMF

δAµ(rj)
=
∑
ℓ,σ

(
i(βℓ

j)µ t
ℓ
je

iA(rj ,t)·βℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
+
∑
j′

(
δ∆j′

δAµ(rj)
c†i,↑c

†
i,↓ +

δ∆∗
j′

δAµ(rj)
ci,↓ci,↑ −

1

U

δ|∆j′ |2

δAµ(rj)

)
≡ ĴK

µ (rj) + Ĵ∆
µ (rj)

(18)

If the system is perturbed by a vector potential of the form Aµ(r, t) = Aµ(q, t)e
−iq·r then the corresponding

coupling is

∑
j,µ

δĤMF

δAµ(rj , t)
Aµ(q, t)e

−iq·rj = −
∑
µ

Aµ(q, t)
∑
j

Ĵµ(rj , t)e
−iq·rj = −

∑
µ

Aµ(q, t)Ĵµ(q, t) (19)
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where µ is a spatial index (µ = x, y, . . .). Thus

Ĵµ(q) =
∑
j,ℓ,σ

(
i(βℓ

j)µ t
ℓ
je

iA(rj ,t)·βℓ
jc†

j+βℓ
j ,σ
cj,σ +H.c.

)
e−iq·rj

+
∑
j,j′

(
δ∆j′

δAµ(rj)
c†i,↑c

†
i,↓ +

δ∆∗
j′

δAµ(rj)
ci,↓ci,↑ −

1

U

δ|∆j′ |2

δAµ(rj)

)
e−iq·rj

≡ ĴK
µ (q) + Ĵ∆

µ (q)

(20)

Paramagnetic Current

It is useful to decompose the current into paramagnetic and diamagnetic components

Ĵµ(q) = Ĵp
µ(q) + T̂µν(q)Aν(q) (21)

where there is an implied sum over ν. Both Ĵp
µ(q) and T̂µν(q) admit further decomposition into kinetic and pairing

contributions, as in the previous section. The kinetic component of the paramagnetic current is

ĴK,p
µ (q) =

∑
j,ℓ,σ

(
i(βℓ

j)µ t
ℓ
jc

†
j+βℓ

j ,σ
cj,σ − i(βℓ

j)µ t
ℓ∗
j c

†
j,σcj+βℓ

j ,σ

)
e−iq·rj (22)

=
i

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q)− tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
(23)

where we have used (6).
The pairing contribution to the paramagnetic current is

Ĵ∆,p
µ (q) =

∑
j′

∑
j

δ∆j′

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj

 c†j′,↑c
†
j′,↓ +

∑
j

δ∆∗
j′

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj

 cj′,↓cj′,↑ −

∑
j

1

U

δ|∆j′ |2

δAµ(rj)

∣∣∣∣∣
A=0

e−iq·rj


=
∑
j′

[
δ∆j′

δAµ(q)

∣∣∣∣∣
A=0

c†j′,↑c
†
j′,↓ +

δ∆∗
j′

δAµ(q)

∣∣∣∣∣
A=0

cj′,↓cj′,↑ −
1

U

δ|∆j′ |2

δAµ(q)

∣∣∣∣∣
A=0

]
(24)

where the derivatives with respect to A are evaluated at A = 0. Hereafter, all derivatives with respect to A will
be evaluated at A = 0; thus, we omit the evaluation symbol on the derivatives from now on. We have used that
the variation δ∆j′ with respect to a vector potential of the form δAµ(r, t) = δAµ(q, t)e

−iq·r is

δ∆j′ =
∑
j′

δ∆j′

δAµ(rj)
δAµ(q, t)e

−iq·rj (25)

so that ∑
j

δ∆j′

δAµ(rj)
e−iq·rj =

δ∆j′

δAµ(q)
(26)

Recall that we have assumed that ∆j at A = 0 is periodic with the same periodicity as the hopping amplitudes tℓj ,
i.e. we can still define a unit cell by the vectors a1,a2 (in 2D) in the presence of pairing. More generally we take
∆i to be periodic, and take its period to be commensurate with that of the hopping amplitudes. This situation
requires a modification of a1,a2, but otherwise no generality is lost. Thus ∆j is only a function of the intra-unit
cell label. In other words,

∆j = ∆m (27)

From this, it follows that
δ∆j′

δAµ(q)
can be written as a periodic function times a plane wave:
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δ∆j′

δAµ(q)
=

δ∆m

δAµ(q)
e−iq·Ri (28)

Thus the pairing contribution to the current, after using (6), is

Ĵ∆,p
µ (q) =

1

Nc

∑
m,k

[
δ∆m

δAµ(q)
c†m,↑(k)c

†
m,↓(−k − q) +

δ∆∗
m

δAµ(q)
cm,↓(−k)cm,↑(k + q)

]
−
∑
j

1

U

δ|∆j |2

δAµ(q)
(29)

The paramagnetic current is then

Ĵp
µ(q) =

i

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q)− tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
+

1

Nc

∑
m,k

[
δ∆m

δAµ(q)
c†m,↑(k)c

†
m,↓(−k − q) +

δ∆∗
m

δAµ(q)
cm,↓(−k)cm,↑(k + q)

]
−
∑
i

1

U

δ|∆i|2

δAµ(q)
(30)

It is convenient to write the kinetic part of the current operator in the following way (what follows is merely a
matter of convenient notation)

ĴK,p
µ (q) =

1

Nc

∑
k,σ

∑
mm′

Jmm′;µ(k, q)c
†
mσ(k)cm′σ(k + q)

=
1

Nc

∑
k

∑
mm′

[
Jmm′;µ(k, q)c

†
m↑(k)cm′↑(k + q)− Jm′m;µ(−k − q, q)cm↓(−k)c†m′↓(−k − q)

]
+ c-numbers

(31)

where m and m′ are site/orbital labels. The matrix elements Jmm′;µ(k, q) can be read off from (30). Now,
Hermiticity of the current operator implies Jm′m;µ(−k − q, q) = Jmm′;µ(−k,−q)∗. Thus the total paramagnetic
current can be written in the basis

ψm(k) =

(
cm↑(k)

c†m↓(−k)

)
as

Ĵp
µ(q) =

1

Nc

∑
k

∑
mm′

ψ†
m(k)

(
Jmm′;µ(k, q)

δ∆m

δAµ(q)
δmm′

δ∆∗
m

δAµ(q)
δmm′ −J∗

mm′;µ(−k,−q)

)
ψm′(k + q) + c-numbers

≡ 1

Nc

∑
k

∑
mm′

ψ†
m(k)Imm′;µ(k, q)ψm′(k + q) + c-numbers

(32)

where

Imm′;µ(k, q) =

(
Jmm′;µ(k, q)

δ∆m

δAµ(q)
δmm′

δ∆∗
m

δAµ(q)
δmm′ −J∗

mm′;µ(−k,−q)

)
(33)

It is convenient to do the same for the kinetic current only:

ĴK,p
µ (q) =

1

Nc

∑
k

∑
mm′

ψ†
m(k)IKmm′;µ(k, q)ψ

′
m(k + q) + c-numbers (34)

where

IKmm′;µ(k, q) =

(
Jmm′;µ(k, q) 0

0 −J∗
mm′;µ(−k,−q)

)
(35)
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Diamagnetic Current

The diamagnetic current should also be computed in order to calculate the linear response to an electromagnetic
field. The diamagnetic current is obtained by carrying out the expansion in A to linear order in (20) and going over
to momentum space. The result for the prefactor of Aν(q) coming from the kinetic current in such an expansion is

T̂K
µν(q) = − 1

Nc

∑
m,ℓ,σ

∑
k

(βℓ
m)µ(β

ℓ
m)ν

[
tℓme

−ik·βℓ
mc†

m+βℓ
mσ

(k)cmσ(k + q) + tℓ∗me
i(k+q)·βℓ

mc†mσ(k)cm+βℓ
mσ(k + q)

]
(36)

There is also a pairing contribution T̂∆
µν(q). However, since ⟨Ĵ∆

µ (q)⟩ ≡ 0, this term does not contribute to the
response of the current, and thus is irrelevant for our calculation of the superfluid weight.

Superfluid Weight

The superfluid weight may be computed by calculating the response of the current ⟨Ĵµ⟩ ≡ ⟨ĴK
µ ⟩ to a static vector

potential (ω = 0) in the long wavelength limit (q → 0) [1, 2]

δ⟨Ĵµ(q → 0, ω = 0)⟩ ≡ δ⟨ĴK
µ (q → 0, ω = 0)⟩ = D(s)

µνAν(q = 0, ω = 0) (37)

where

D(s)
µν =

〈
T̂K
µν(q = 0, ω = 0)

〉
+ lim

q→0
Πµν(q, ω = 0) (38)

We will see that the pairing potential modifies the paramagnetic current-current correlation function Πµν(q, ω).

Paramagnetic Current-Current Correlation Function

We will compute the paramagnetic current-current correlation function while taking into account the dependence
of the pairing potential on Aµ(q). We compute the following response function in imaginary time τ :

Πµν(q, τ) = − 1

Nc

〈
Tτ ĴK,p

µ (q, τ)Ĵp
ν (−q, 0)

〉
(39)

The time-ordering symbol in imaginary time is Tτ . Note that the first factor in the expectation value above is the
kinetic current operator ĴK,p

µ , since we are computing the response of ⟨ĴK
µ ⟩, whereas the second factor is the full

current Ĵp
µ = ĴK,p

µ + Ĵ∆,p
µ , since the vector potential couples to the full current.

The response function may be represented in the Matsubara frequency domain, using (32), as

Πµν(q, iωn) =
1

βNc

∑
mm′ll′

∑
k,ikn′

Tr

[
Gm′l′(k, ikn′) · IKl′l;µ(k, q) · Glm(k + q, ikn′ + iωn) · Imm′;ν(k + q,−q)

]
(40)

The centered dots indicate matrix multiplication in particle/hole space and G can be expressed in the basis

ψm(k) =

(
cm↑(k)

c†m↓(−k)

)
(41)

as

Gmm′(k, ikn′) = −
∫ β

0

dτ
〈
Tτψm(k, τ)ψ†

m′(k, 0)
〉
eikn′τ (42)

which is a 2 × 2 matrix-valued Green’s function; α and β label the orbital/site within the unit cell. ωn = 2πn/β
is a bosonic frequency and kn′ = (2n′ + 1)π/β is a fermionic frequency. It is convenient to express G in terms of
eigenstates |ϕa(k)⟩ with particle and hole components at site/orbital m

|ϕma (k)⟩ =
(
uma (k)
vma (k)

)
(43)



Calculating the Response of ∆ 7

and energies Ea(k) of the BdG Hamiltonian as

Gmm′(k, ikm) =
∑
a

|ϕma (k)⟩⟨ϕm′

a (k)|
ikn′ − Ea(k)

(44)

Inserting this into (40) and doing the sum over kn′ , we obtain, in the static limit ωn = 0,

Πµν(q, iωn = 0) =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k + q))

Ea(k)− Eb(k + q)
⟨ϕa(k)|IKµ (k, q)|ϕb(k + q)⟩ (45)

×⟨ϕb(k + q)|Iν(k + q,−q)|ϕa(k)⟩

Where we have introduced the shorthand notation ⟨ϕb(k)|M |ϕa(k′)⟩ =
∑

mm′⟨ϕmb (k)|Mmm′ |ϕm′

a (k′)⟩ We then take
the limit q → 0, where Imβ;µ(k, q → 0) may be expressed as

Imm′;µ(k, 0) =

 ∂Hmm′
∂kµ

∣∣
k

δ∆m

δQµ
δmm′

δ∆∗
m

δQµ
δmm′ −∂H∗

mm′
∂kµ

∣∣
−k

 (46)

where H is the normal state Hamiltonian. We have called Aµ(q = 0) = Qµ. Note that δ∆m

δQµ
≡ δ∆m

δAµ

∣∣∣
0
from the

main text. We have

Πµν(q → 0, iωn = 0) =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|Iν(k, 0)|ϕa(k)⟩ (47)

Note that the limit q → 0 implies that nF (Ea(k))−nF (Eb(k))
Ea(k)−Eb(k)

should be understood as ∂nF

∂E whenever Eb(k) = Ea(k).

Calculating the Response of ∆

In order to complete the calculation, we need to compute δ∆m

δQµ
. This can be done in a number of ways including

finite difference as mentioned in the main text (also see below), differentiating the gap equations directly, solving
the Bethe-Salpeter equation for the vertex correction, or using linear response. Here, we use linear response. The
operator ∆̂m can be written in Nambu form by writing

∆̂m(q) = U
∑
k

cm,↓(−k)cm,↑(k + q) = U
∑
k

∑
ll′

ψ†
l (k) · M

m
ll′ · ψl′(k + q) (48)

where Mm
ll′ = δll′δl,mτ− and τ− = 1

2 (τx− iτy) where τx and τy are the Pauli x and y matrices in particle/hole space.
The centered dots indicate matrix multiplication in particle/hole space. We compute the response function

δ∆m

δAµ(q, τ)
=

1

Nc

〈
Tτ ∆̂m(q, τ)Jp

µ(−q, 0)
〉

=
U

Nc

∑
kk′

∑
pll′p′

〈
Tτψ†

p(k, τ) · Mm
pl · ψl(k + q, τ)ψ†

l′(k
′, 0) · Il′p′;µ(k

′,−q) · ψp′(k′ − q, 0)
〉 (49)

We have assumed that ⟨∆m(q)⟩ = 0 for q ̸= 0 and
〈
Jp
µ(q = 0)

〉
= 0 (i.e. the total current vanishes in the

groundstate). The above may be expressed in Matsubara frequency space as

δ∆m

δAµ(q, iωn)
= − U

βNc

∑
pp′ll′

∑
k,ikn′

Tr

[
Gp′l′(k, ikn′) · Mm

l′l · Glp(k + q, ikn′ + iωn) · Ipp′;µ(k + q,−q)

]

= − U

βNc

∑
pp′

∑
k,ikn′

Tr

[
Gp′m(k, ikn′) · τ− · Gmp(k + q, ikn′ + iωn) · Ipp′;µ(k + q,−q)

] (50)
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We follow the steps leading to (47), and we find

δ∆m

δQµ
= − U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|Mm|ϕb(k)⟩⟨ϕb(k)|Iµ(k, 0)|ϕa(k)⟩ (51)

= − U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|Iµ(k, 0)|ϕa(k)⟩ (52)

This is an equation in δ∆m

δQµ
since this quantity also appears in the right hand side as

Iµ(k, 0) ≡ IKµ (k, 0) +
∑
m

(
δ∆m

δQµ
MmT +

δ∆∗
m

δQµ
Mm

)
(53)

where

IKµ (k, 0) ≡ IKµ (k) =

(
∂H
∂kµ

∣∣
k

0

0 −∂H∗

∂kµ

∣∣
−k

)
(54)

Plugging this in to the right hand side gives

δ∆m

δQµ
=− U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|IKµ (k)|ϕa(k)⟩

− U

Nc

∑
m′

δ∆m′

δQµ

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ+|ϕm
′

a (k)⟩

− U

Nc

∑
m′

δ∆∗
m′

δQµ

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ−|ϕm
′

a (k)⟩ (55)

where τ+ = 1
2 (τx + iτy). This may be written in the following form

(Cµ)m =
∑
m′

(
Amm′

δ∆m′

δQµ
+ Bmm′

δ∆∗
m′

δQµ

)
(56)

where

Amm′ = − 1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ+|ϕm
′

a (k)⟩ − 1

U
δmm′

Bmm′ = − 1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕm

′

b (k)|τ−|ϕm
′

a (k)⟩

(Cµ)m =
1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕma (k)|τ−|ϕmb (k)⟩⟨ϕb(k)|IKµ (k)|ϕa(k)⟩

(57)

The vector Cµ corresponds to the first term on the right hand side of (55).
The equation (56) is singular. This follows from gauge invariance. Consider a small rotation of the phase of ∆j

∆j → eiα∆j ≈ (1 + iα)∆j (58)

where α≪ 1. We may think of this as perturbing the Hamiltonian (1) with

Ĥ′ = −iα
∑
j

(
∆jc

†
j,↑c

†
j,↓ −∆∗

jcj,↓cj,↑

)
(59)

We then compute the response of the pairing potential ∆i to this static perturbation. On the one hand, the answer
is clear, it is

δ∆m = iα∆m (60)
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On the other hand, the response δ∆m follows from the static linear response formula, which may be written as

δ∆m =
U

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|Mm|ϕb(k)⟩⟨ϕb(k)|

(
−iαMmT∆m + iαMm∆∗

m

)
|ϕa(k)⟩

=U
∑
m′

(
Amm′ +

1

U
δmm′

)
(iα∆m′)− U

∑
mm′

Bmm′(iα∆∗
m′)

(61)

Combining (60) and (61), we have ∑
m′

(Amm′∆m′ − Bmm′∆∗
m′) = 0 (62)

(This may be viewed as a Ward identity obeyed by the pairing susceptibility.) Thus, for any solution
δ∆ĩ

δQµ
of (56),

we may construct another solution

δ∆ĩ

δQµ
→ δ∆ĩ

δQµ

′
=
δ∆ĩ

δQµ
+ iα∆ĩ (63)

since according to (62), the additional term is “projected out.” The response (60) corresponds to the Goldstone
mode, as is clear from (58). The matrix pseudoinverse is convenient for finding a representative solution of a singular
equation such as (56).

Correction to the Superfluid Weight

Once δ∆m

δQµ
is determined, we may compute the correction to the superfluid weight. It is expedient to write

(Ds)µν =
〈
T̂K
µν(q = 0, ω = 0)

〉
+

1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|Iν(k, 0)|ϕa(k)⟩

=
(
D(0)

s

)
µν

+
1

Nc

∑
k

∑
ab

∑
m

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|

(
δ∆m

δQν
MmT +

δ∆∗
m

δQν
Mm

)
|ϕa(k)⟩

=
(
D(0)

s

)
µν

+ 2 Re

[∑
m

(Cµ)m
δ∆∗

m

δQν

]
(64)

where (
D(0)

s

)
µν

=
〈
T̂K
µν(q = 0, ω = 0)

〉
+Π(0)

µν (q → 0, iωn = 0) (65)

is the usual formula for the superfluid weight and

Π(0)
µν (q → 0, iωn = 0) =

1

Nc

∑
k

∑
ab

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩⟨ϕb(k)|IKν (k, 0)|ϕa(k)⟩ (66)

Therefore the correction to the superfluid weight due to the response of the pairing potential is

(δDs)µν = 2 Re

[∑
m

(Cµ)m
δ∆∗

m

δQν

]
(67)

=
1

Nc

∑
k

∑
ab

∑
m

nF (Ea(k))− nF (Eb(k))

Ea(k)− Eb(k)
⟨ϕa(k)|IKµ (k, 0)|ϕb(k)⟩ (68)

×
(
δ∆m

δQν
⟨ϕmb (k)|τ+|ϕma (k)⟩+ δ∆∗

m

δQν
⟨ϕmb (k)|τ−|ϕma (k)⟩

)
(69)

where we have used the expression for Cµ is given in (57). Eq. (68) is the response of the current due to the change
in the pairing potential induced by a “twist” Q.
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Example: Uniform Superconductor

We show that (δDs)µν vanishes for a uniform s-wave system. It is sufficient to show that Cµ vanishes. The
Hamiltonian is

H =
∑
kσ

ξkc
†
kσckσ −∆

∑
k

c†k↑c
†
−k↓ −∆∗

∑
k

c−k↓ck↑ (70)

where V is the volume of the system. Let us take ∆ to be real. The Green’s function is then

G(k, ikn) =
ikn + ξkτ3 +∆τ1

(ikn)2 − E2
k

(71)

where E2
k = ξ2k +∆2. It is convenient to express Cµ as

Cµ = − 1

βV
lim
q→0

∑
k,ikn

(∂µξk) Tr [τ− · G(k + q, ikn) · G(k, ikn)]

= − 1

V

∑
k

(∂µξk)
∆

2Ek
(n′F (Ek)− n′F (−Ek))

= 0

(72)

where ∂µ = ∂/∂kµ. The last equality follows from the fact that n′F (−Ek) = n′F (Ek). Thus the correction (68)
vanishes, and a spatially non-uniform system is required for the correction to be non-zero.

Relation to Vertex Corrections

We briefly sketch how our result may be obtained using current vertex corrections in the Nambu basis. In a
superconductor, the photon vertex function Γµ describes the coupling of the system to the electromagnetic vector
potential Aµ. This can be related to the bare vertex γµ (e.g., determined through minimal or Peierls substitution),
and the correction arising from interactions encoded in the self-energy Σ:

Γµ − γµ =
δΣ

δAµ
. (73)

In terms of Green’s functions, the electromagnetic kernel is expressed as:

Πµν(q) = −iTr
[∫

d4k γµ(k + q, k)G(k) Γν(k, k + q)G(k + q)

]
, (74)

where G(k) is the full Green’s function in the Nambu basis. The self-energy Σ may depend on Aµ, either directly,
or indirectly through the order parameter. Indeed, in BCS/BdG theory, the self-energy in the Nambu basis is given
by

Σ(k) =

(
0 ∆(k)

∆†(k) 0

)
(75)

Thus the correction to the electromagnetic kernel is patently given by a term proportional to δ∆/δAµ. One may
solve for this correction using the Bethe-Salpeter equation, and it can be shown that this formulation respects gauge
invariance via the generalized Ward identity [3].

Gauge Invariance

Physical observables, in particular the correction to the superfluid weight arising from the fluctuations in ∆, must
be invariant under global U(1) gauge transformations. This implies that the overall phase of the {∆m(Q)} can
vary in an arbitrary way as a function of the probe field Q. To clarify the point at issue, let us suppose that there
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exists a choice of the overall phase such that {∆m(Q)} are smooth functions of Q in the neighborhood of Q = 0.
We may thus approximate

δ∆m

δQi
≈ ∆m(δQêi)−∆m(0)

δQ
(76)

for δQ sufficiently small. This approximation for determining δ∆m

δQi
may be most convenient when one has nu-

merical solutions of {∆m(Q)} for various Q. However, numerical solutions of {∆m(Q)} are not guaranteed to
possess a smoothly varying phase as a function of Q. This is especially salient in systems with vortices, where
the singular nature of the phase around vortex cores means that, in general, the phase does not vary smoothly.
Let us suppose that the numerical solution {∆′

m(Q)} differs from the smooth solution {∆m(Q)} by a phase:
∆′

m(δQêi) = ∆m(δQêi)e
iθ(δQêi) and ∆′

m(0) = ∆m(0). Then, using the approximation Eq. (76), we would find

δ∆′
m

δQi
≈ ∆′

m(δQêi)−∆′
m(0)

δQ
=

∆m(δQêi)e
iθ(δQêi) −∆m(0)

δQ
(77)

≈
(
eiθ(δQêi) − 1

δQ

)
∆m(0) +

δ∆m

δQi
(78)

Again, since smoothness is not guaranteed, eiθ(δQêi) − 1 need not be small. Therefore, in order that the result

for δDs be gauge invariant, it should return the same result whether
δ∆′

m

δQi
or δ∆m

δQi
is substituted into the formula.

Equivalently, it should “project out” terms of the form zi∆m(0) where zi =
eiθ(δQêi)−1

δQ is a (large) complex number.
We note that this is more restrictive than standard discussions of gauge invariance, since we allow arbitrarily

rapid phase variations in the order parameter. This is essential for computing δ∆m/δQi via finite difference
approximation. In contrast, solutions to Eq. (56) are defined modulo a constant corresponding to an imaginary
zi (see Eq. (63)). This corresponds to the collective mode which is projected out, according to the generalized
Ward identity (see previous section), thus ensuring gauge invariance. However, when using the finite difference
approximation, both real and imaginary components of zi must be projected out, as we have argued in the previous
paragraph. We will argue that Eq. (67) is gauge-invariant in this latter sense. As we have mentioned below Eq. (67),
δDs is determined by the response of the current due to the change in the pairing potential. In other words, it is
determined by the crossed susceptibility χJ,∆. Using this identification of the correction to the superfluid stiffness
with the current-pairing susceptibility, we may see why it is gauge invariant according to the discussion above,
provided scaling the pairing potential by a complex number produces no total current response in equilibrium.
Consider an inhomogeneous superconductor described by a position-dependent pairing potential ∆(r). The current
density J(r) in such a system is given by

J(r) ∝ Im (∆∗(r)(∇+ 2iA)∆(r)) , (79)

where ∆(r) = |∆(r)|eiθ(r) is the complex pairing potential. In equilibrium, the total current is zero:

Jtot =

∫
J(r) dr = 0, (80)

We now scale the pairing potential by a complex number z = |z|eiϕ. The scaled pairing potential is

∆′(r) = z∆(r) = |z|eiϕ∆(r) = |z||∆(r)|ei(θ(r)+ϕ). (81)

To determine the effect of this scaling on the current density, we compute the new current density J ′(r) for the
scaled pairing potential:

J ′(r) ∝ Im ((∆′(r))∗(∇+ 2iA)∆′(r)) . (82)

Therefore, the new current density is

J ′(r) ∝ Im
(
|z|2∆∗(r)(∇+ 2iA)∆(r)

)
= |z|2Im (∆∗(r)(∇+ 2iA)∆(r)) = |z|2J(r). (83)

Since Jtot = 0, it follows that

J ′
tot = |z|2Jtot = 0. (84)

Thus, the change in the total current (the induced current response) due to scaling the pairing potential is

δJtot = 0. (85)

We have verified numerically that Eq. (67) projects out δ∆m

δQi
= zi∆m, and that it gives the same result under

arbitrary variations in the phase θ(q), in the ground state for all cases studied in this work, thus achieving gauge
invariance.
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FIG. 1. The energy as a function of Qx for the system corresponding to Fig. 2 of the main text. The cyan points in that
figure are computed by taking a numerical second derivative at the minimum of the energy using Q points very close to that
value (not shown here). Without a periodic potential (V0 = 0), the system forms a vortex lattice that freely moves as Q
is varied. Thus, the energy does not depend on Q, as seen in the left panel, and the superfluid weight vanishes. When a
periodic potential is applied, the vortices become somewhat obstructed (pinned), resulting in the reemergence of superfluid
weight (center and right panels).
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FIG. 2. Top row: the spatially averaged value of |∆| as a function of the strength of the applied potential without (left) and
with (right) an applied magnetic field. Areas with high potential V (r) tend to reduce |∆|, while areas with low potential
tend to enhance it, resulting in |∆| roughly maintaining its average as V0 increases. Bottom Row: The correction to the

superfluid weight due to the response of ∆, expressed as a percentage of D
(0)
s , the uncorrected superfluid weight, without

(left) and with (right) an applied magnetic field. Under an applied magnetic field, a vortex lattice forms, and if the vortices
are unpinned (V0 = 0), the correction completely eliminates the superfluid weight, which is incorrectly given as non-zero

according to D
(0)
s . This is seen from the −100% correction shown in the bottom right panel at V0 = 0.
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Inversion of Equation (12)

As stated in the main text the square matrix K that appears in Eq. (12) in the main text is singular, it has rank
one less than its dimension, n, reflecting the fact that the superconducting order parameter is defined apart from
an overall phase factor. To obtain δ∆m/δAµ

∣∣
0
we need to calculate the pseudoinverse, K̃, of K. To do this we first

perform a single-value-decomposition (SVD) of K:

K = UΛV † (86)

where U and V are n× n unitary matrices and Λ is a n× n diagonal matrix of the form

Λ =



λ1 0 · · · · · · 0
0 λ2 0 · · · 0
... 0 λ3 0 0
...

...
...

. . .
...

0 0 0 0 λn = 0

 . (87)

Let

Λ̃ =



λ−1
1 0 · · · · · · 0
0 λ−1

2 0 · · · 0
... 0 λ−1

3 0 0
...

...
...

. . .
...

0 0 0 0 λ̃n = 0

 . (88)

then, the pseudoinverse of K is given by

K̃ = V Λ̃U† (89)

and

δ∆m

δAµ

∣∣∣∣
0

= K̃Cµ + (1− K̃K)W (90)

where Cµ is the column vector with elements {(Cµ)m}, and W is the vector containing the free parameters. In our

case, only the last element of the diagonal matrix (1−K̃K) is nonzero leaving just one free parameter, corresponding
to the overall gauge phase factor.

Superconductor with vortex lattice

We consider a superconductor with a 2D vortex lattice in the (x, y) plane induced by a background perpendicular
magnetic field Bz. The presence of this field is taken into account within the tight model Hamiltonian (1) via the
introduction of a Peierls phase. This has the effect of altering the translation group of the underlying square lattice
to that of the magnetic translation group [4]. A magnetic unit cell must be chosen such that an integer number of
magnetic flux quanta Φ0 = h/e due to Bz thread the 2D systems. We chose the magnetic unit cells to be Ma×Ma
with one flux quantum threading it.
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